タグ「自然数」の検索結果

17ページ目:全1172問中161問~170問を表示)
前橋工科大学 公立 前橋工科大学 2016年 第1問
$n=0,\ 1,\ 2,\ \cdots$に対して,$a_n=2^n$とする.自然数$N$に対して,$a_0,\ a_1,\ \cdots,\ a_N$から重複なしにいくつかを選んで和をとるという操作を考える.例えば,$N=1$のときには,この操作によって自然数$1,\ 2,\ 3$を作ることができる($1=a_0,\ 2=a_1,\ 3=a_0+a_1$).次の問いに答えなさい.

(1)$N=2$のとき,$7$以下のすべての自然数をこの操作によって作りなさい.
(2)この操作によって作ることのできる最大の自然数は$2^{N+1}-1$であることを示しなさい.
(3)自然数$N$に対して,$2^{N+1}-1$以下のすべての自然数をこの操作によって作ることができる.このことを数学的帰納法を用いて証明しなさい.
(4)この操作によって$253$を作ることのできる最小の$N$の値を求めなさい.
センター試験 問題集 センター試験 2015年 第2問
$\kagiichi$ \ 条件$p_1,\ p_2,\ q_1,\ q_2$の否定をそれぞれ$\overline{p_1},\ \overline{p_2},\ \overline{q_1},\ \overline{q_2}$と書く.

(1)次の$[ア]$に当てはまるものを,下の$\nagamarurei$~$\nagamarusan$のうちから一つ選べ.

命題「($p_1$かつ$p_2$) $\Longrightarrow$ ($q_1$かつ$q_2$)」の対偶は$[ア]$である.

$\nagamarurei$ ($\overline{p_1}$または$\overline{p_2}$) $\Longrightarrow$ ($\overline{q_1}$または$\overline{q_2}$)
$\nagamaruichi$ ($\overline{q_1}$または$\overline{q_2}$) $\Longrightarrow$ ($\overline{p_1}$または$\overline{p_2}$)
$\nagamaruni$ ($\overline{q_1}$かつ$\overline{q_2}$) $\Longrightarrow$ ($\overline{p_1}$かつ$\overline{p_2}$)
$\nagamarusan$ ($\overline{p_1}$かつ$\overline{p_2}$) $\Longrightarrow$ ($\overline{q_1}$かつ$\overline{q_2}$)
(2)自然数$n$に対する条件$p_1,\ p_2,\ q_1,\ q_2$を次のように定める.
\[\begin{array}{ll}
p_1:n \text{は素数である} & p_2:n+2 \text{は素数である} \\
q_1:n+1 \text{は} 5 \text{の倍数である} & q_2:n+1 \text{は}6 \text{の倍数である}
\end{array} \]
$30$以下の自然数$n$のなかで$[イ]$と$[ウエ]$は
命題「($p_1$かつ$p_2$) $\Longrightarrow$ ($\overline{q_1}$かつ$q_2$)」
の反例となる.
\mon[$\kagini$] $\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\angle \mathrm{ABC}={120}^\circ$とする.

このとき,$\mathrm{AC}=[オ]$,$\displaystyle \sin \angle \mathrm{ABC}=\frac{\sqrt{[カ]}}{[キ]}$であり,
$\displaystyle \sin \angle \mathrm{BCA}=\frac{[ク] \sqrt{[ケ]}}{[コサ]}$である.

直線$\mathrm{BC}$上に点$\mathrm{D}$を,$\mathrm{AD}=3 \sqrt{3}$かつ$\angle \mathrm{ADC}$が鋭角,となるようにとる.点$\mathrm{P}$を線分$\mathrm{BD}$上の点とし,$\triangle \mathrm{APC}$の外接円の半径を$R$とすると,$R$のとり得る値の範囲は$\displaystyle \frac{[シ]}{[ス]} \leqq R \leqq [セ]$である.
大阪大学 国立 大阪大学 2015年 第1問
自然数$n$に対して関数$f_n(x)$を
\[ f_n(x)=\frac{x}{n(1+x)} \log \left( 1+\frac{x}{n} \right) \quad (x \geqq 0) \]
で定める.以下の問いに答えよ.

(1)$\displaystyle \int_0^n f_n(x) \, dx \leqq \int_0^1 \log (1+x) \, dx$を示せ.
(2)数列$\{I_n\}$を
\[ I_n=\int_0^n f_n(x) \, dx \]
で定める.$0 \leqq x \leqq 1$のとき$\log (1+x) \leqq \log 2$であることを用いて数列$\{I_n\}$が収束することを示し,その極限値を求めよ.ただし,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$であることは用いてよい.
北海道大学 国立 北海道大学 2015年 第2問
$p,\ q$は正の実数とし,
\[ a_1=0,\quad a_{n+1}=pa_n+(-q)^{n+1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定まる数列$\{a_n\}$がある.

(1)$\displaystyle b_n=\frac{a_n}{p^n}$とする.数列$\{b_n\}$の一般項を$p,\ q,\ n$で表せ.
(2)$q=1$とする.すべての自然数$n$について$a_{n+1} \geqq a_n$となるような$p$の値の範囲を求めよ.
北海道大学 国立 北海道大学 2015年 第5問
$n$は自然数,$a$は$\displaystyle a>\frac{3}{2}$をみたす実数とし,実数$x$の関数
\[ f(x)=\int_0^x (x-\theta)(a \sin^{n+1}\theta-\sin^{n-1}\theta) \, d\theta \]
を考える.ただし,$n=1$のときは$\sin^{n-1}\theta=1$とする.

(1)$\displaystyle \int_0^{\frac{\pi}{2}} \sin^{n+1} \theta \, d\theta=\frac{n}{n+1}\int_0^{\frac{\pi}{2}} \sin^{n-1}\theta \, d\theta$を示せ.

(2)$\displaystyle f^\prime \left( \frac{\pi}{2} \right)=0$をみたす$n$と$a$の値を求めよ.
(3)$(2)$で求めた$n$と$a$に対して,$\displaystyle f \left( \frac{\pi}{2} \right)$を求めよ.
神戸大学 国立 神戸大学 2015年 第2問
数列$\{a_n\}$,$\{b_n\}$,$\{c_n\}$が$a_1=5$,$b_1=7$をみたし,さらにすべての実数$x$とすべての自然数$n$に対して
\[ x(a_{n+1}x+b_{n+1})=\int_{c_n}^{x+c_n}(a_nt+b_n) \, dt \]
をみたすとする.以下の問に答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)$c_n=3^{n-1}$のとき,数列$\{b_n\}$の一般項を求めよ.
(3)$c_n=n$のとき,数列$\{b_n\}$の一般項を求めよ.
神戸大学 国立 神戸大学 2015年 第3問
$a,\ b,\ c$を$1$以上$7$以下の自然数とする.次の条件$(*)$を考える.

\mon[$(*)$] $3$辺の長さが$a,\ b,\ c$である三角形と,$3$辺の長さが$\displaystyle \frac{1}{a},\ \frac{1}{b},\ \frac{1}{c}$である三角形が両方とも存在する.

以下の問に答えよ.

(1)$a=b>c$であり,かつ条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
(2)$a>b>c$であり,かつ条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
(3)条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
神戸大学 国立 神戸大学 2015年 第4問
$a,\ b$を実数とし,自然数$k$に対して$\displaystyle x_k=\frac{2ak+6b}{k(k+1)(k+3)}$とする.以下の問に答えよ.

(1)$\displaystyle x_k=\frac{p}{k}+\frac{q}{k+1}+\frac{r}{k+3}$がすべての自然数$k$について成り立つような実数$p,\ q,\ r$を,$a,\ b$を用いて表せ.
(2)$b=0$のとき,$3$以上の自然数$n$に対して$\displaystyle \sum_{k=1}^n x_k$を求めよ.
また,$a=0$のとき,$4$以上の自然数$n$に対して$\displaystyle \sum_{k=1}^n x_k$を求めよ.
(3)無限級数$\displaystyle \sum_{k=1}^\infty x_k$の和を求めよ.
神戸大学 国立 神戸大学 2015年 第5問
$a,\ b,\ c$を$1$以上$7$以下の自然数とする.次の条件$(*)$を考える.

\mon[$(*)$] $3$辺の長さが$a,\ b,\ c$である三角形と,$3$辺の長さが$\displaystyle \frac{1}{a},\ \frac{1}{b},\ \frac{1}{c}$である三角形が両方とも存在する.

以下の問に答えよ.

(1)$a=b>c$であり,かつ条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
(2)$a>b>c$であり,かつ条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
(3)条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
広島大学 国立 広島大学 2015年 第2問
$n$を自然数とし,$p_n,\ q_n$を実数とする.ただし,$p_1,\ q_1$は$p_1^2-4q_1=4$を満たすとする.$2$次方程式$x^2-p_nx+q_n=0$は異なる実数解$\alpha_n,\ \beta_n$をもつとする.ただし,$\alpha_n<\beta_n$とする.$c_n=\beta_n-\alpha_n$とおくとき,数列$\{c_n\}$は
\[ \frac{c_{n+1}}{c_n}=\frac{n+2}{\sqrt{n(n+1)}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.次の問いに答えよ.

(1)$r_n=\log_2 (n \sqrt{n}+\sqrt{n})$とするとき,$\displaystyle \frac{n+2}{\sqrt{n(n+1)}}$を$r_n,\ r_{n+1}$を用いて表せ.
(2)$c_n$を$n$の式で表せ.
(3)$p_n=n \sqrt{n}$であるとき,$q_n$を$n$の式で表せ.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。