タグ「自然数」の検索結果

109ページ目:全1172問中1081問~1090問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2010年 第3問
自然数$n$に対して,
\[ 2\sqrt{n+1}-2 < 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots + \frac{1}{\sqrt{n}} \leqq 2\sqrt{n}-1 \]
が成り立つことを示せ.
福島大学 国立 福島大学 2010年 第1問
以下の問いに答えなさい.

(1)自然数$n$に対して,$\displaystyle S(n)=\sum_{k=1}^{12n+3}k^2,\ T(n)=\sum_{k=1}^{12n+3}(2k-1)$とおくとき$S(n)-T(n)$が正の奇数となることを証明しなさい.
(2)関数$f(x)$が次の関係を満たすものとする.
\[ \int_{-u}^0 t \{ \frac{d}{dt} f(t+u) \} \, dt=-e^{-u} \cos u+uf(0)-u+1 \]
このとき,$z=t+u$という置き換えを利用して$\displaystyle \int_0^u f(z) \, dz$を求めなさい.
(3)整式$P_1(x)$は,$x^2-(a+1)x+a$で割ると$2x+b$余り,整式$P_2(x)$は,$x^2-(b-2)x-2b$で割ると$x-a$余る.$P_1(a)=2P_2(b)$のとき,$a$と$b$の関係を求めなさい.
山形大学 国立 山形大学 2010年 第1問
自然数全体から,偶数と$3^k \ (k \text{は自然数})$と表される数を取り出して,小さい方から順に並べたものを
\[ a_1,\ a_2,\ a_3,\ \cdots,\ a_n,\ \cdots \]
とする.この数列$\{a_n\}$について,次の問に答えよ.

(1)$a_n=1000$となる$n$を求めよ.
(2)$a_n=3^m \ (m \text{は自然数})$となる$n$を$m$を用いて表せ.
(3)一般項$a_n$を求めよ.
(4)第$n$項までの和を$S_n$とする.自然数$m$に対して$3^m \leqq a_n < 3^{m+1}$であるとき,$S_n$を$m,\ n$を用いて表せ.
群馬大学 国立 群馬大学 2010年 第1問
次の問いに答えよ.

(1)$n$を自然数とし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.

\mon[(ア)] $\displaystyle 10^n < \left( \frac{5}{2} \right)^m$を満たす自然数$m$に対し,$5n<2m$を証明せよ.
\mon[(イ)] $\displaystyle \left( \frac{\sqrt{3}}{2} \right)^n<\frac{1}{5000}< \left( \frac{\sqrt{3}}{2} \right)^{n-1}$を満たす$n$を求めよ.

(2)実数$x,\ y$が連立不等式$4x-3y \geqq 1,\ -2x+6y \geqq 1$を満たすとき,$\log_8(4^x+8^y)$の最小値を求めよ.
山形大学 国立 山形大学 2010年 第2問
行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$に対して$\Delta=ad-bc$とおく.このとき,行列
\[ S=\biggl( \begin{array}{cc}
s-2 & 4-s \\
4-s & 2-s
\end{array} \biggr),\quad T=\biggl( \begin{array}{cc}
1-t & t^2-1 \\
t+1 & t-1
\end{array} \biggr) \]
について,次の問に答えよ.

(1)$S$が$\Delta=-2$を満たすとき,次の(i),(ii),(iii)に答えよ.

\mon[(i)] $S$を求めよ.
\mon[(ii)] $S^2$を求めよ.
\mon[(iii)] $S+S^2+\cdots +S^{2n-1}+S^{2n}$を求めよ.ただし,$n$は自然数とする.

(2)$S$が$\Delta=0$を満たすとき,次の(i),(ii),(iii)に答えよ.

\mon[(i)] $T$を求めよ.
\mon[(ii)] $T^2$を求めよ.
\mon[(iii)] $(E+T)^n$を求めよ.ただし,$E$は2次の単位行列とし,$n$は自然数とする.
群馬大学 国立 群馬大学 2010年 第2問
原点のまわりの角$\alpha$の回転移動$f$を表す行列を$F$とおき,$0^\circ \leqq \beta <90^\circ$として,直線$y=(\tan \beta)x$に関する対称移動$g$を表す行列を$G$とおく.また,合成移動$g \circ f$を表す行列を$H$とおく.

(1)$H$を求めよ.
(2)$\alpha=\alpha_1$のときの$H$を$H_1$,$\alpha=\alpha_2$のときの$H$を$H_2$とするとき,行列の積$H_2H_1$を求めよ.
(3)$n$を自然数とする.$\alpha=30^\circ,\ \beta=45^\circ$のときの$(FG)^n$を求めよ.
群馬大学 国立 群馬大学 2010年 第1問
$n$を自然数とし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.

(1)$\displaystyle 10^n < \left( \frac{5}{2} \right)^m$を満たす自然数$m$に対し,$5n<2m$を証明せよ.
(2)$\displaystyle \left( \frac{\sqrt{3}}{2} \right)^n<\frac{1}{5000}< \left( \frac{\sqrt{3}}{2} \right)^{n-1}$を満たす$n$を求めよ.
群馬大学 国立 群馬大学 2010年 第1問
$n$を自然数とし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.

(1)$\displaystyle 10^n < \left( \frac{5}{2} \right)^m$を満たす自然数$m$に対し,$5n<2m$を証明せよ.
(2)$\displaystyle \left( \frac{\sqrt{3}}{2} \right)^n<\frac{1}{5000}< \left( \frac{\sqrt{3}}{2} \right)^{n-1}$を満たす$n$を求めよ.
群馬大学 国立 群馬大学 2010年 第1問
$n$を自然数とし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.

(1)$\displaystyle 10^n < \left( \frac{5}{2} \right)^m$を満たす自然数$m$に対し,$5n<2m$を証明せよ.
(2)$\displaystyle \left( \frac{\sqrt{3}}{2} \right)^n<\frac{1}{5000}< \left( \frac{\sqrt{3}}{2} \right)^{n-1}$を満たす$n$を求めよ.
福井大学 国立 福井大学 2010年 第4問
$p$を0でない実数とし,行列$A,\ B$をそれぞれ次のように定める.このとき,以下の問いに答えよ.
\[ A=\biggl( \begin{array}{cc}
p-\frac{1}{p} & 1 \\
2 & -p
\end{array} \biggr),\quad B=\biggl( \begin{array}{cc}
1 & 0 \\
\frac{1}{p} & -1
\end{array} \biggr) \]

(1)等式$A^{-1}=aA+bE$が成り立つ定数$a,\ b$を$p$で表せ.ただし,$E$は2次の単位行列である.
(2)$AB=C$とおく.$E+C$の逆行列が存在することを示し,さらに自然数$m$に対して等式
\[ E-C+C^2-C^3+\cdots -C^{2m-1}=(E-C^{2m})(E+C)^{-1} \]
が成り立つことを示せ.
(3)$p=\sqrt{3}$とし,自然数$n$に対し$D_n=E-C+C^2-C^3+\cdots -C^{6n-1}$とおく.行列$D_n$の表す1次変換により点$(2,\ 3)$が点$(x_n,\ y_n)$に移されるとする.$x_n$および$\displaystyle \frac{y_n}{x_n}$を求めよ.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。