タグ「自然数」の検索結果

105ページ目:全1172問中1041問~1050問を表示)
信州大学 国立 信州大学 2010年 第2問
ある奇数の自然数$m$から始まる連続する奇数個の自然数の和が$2010$である.$m$を求めよ.
横浜国立大学 国立 横浜国立大学 2010年 第2問
1個のいびつなさいころがある.$1,\ 2,\ 3,\ 4$の目が出る確率はそれぞれ$\displaystyle \frac{p}{2}$であり,$5,\ 6$の目が出る確率はそれぞれ$\displaystyle \frac{1-2p}{2}$である.ただし,$\displaystyle 0<p<\frac{1}{2}$とする.このさいころを投げて,$xy$平面上の点Qを次のように動かす.

\mon[(i)] 1または2の目が出たときには,Qを$x$軸の正の方向に1だけ動かす.
\mon[(ii)] 3または4の目が出たときには,Qを$y$軸の正の方向に1だけ動かす.
\mon[(iii)] 5または6の目が出たときには,Qを動かさない.

Qは最初原点$(0,\ 0)$にある.このさいころを$(n+1)$回投げ,Qが通った点(原点およびQの最終位置の点を含む)の集合を$S$とする.ただし,$n$は自然数とする.次の問いに答えよ.

(1)さいころを$(n+1)$回投げたとき,$S$が点$(1,\ n-1)$を含む確率を求めよ.
(2)さいころを$(n+1)$回投げたとき,$S$が領域$x+y<n$に含まれる確率を求めよ.
(3)さいころを$(n+1)$回投げたとき,$S$が点$(k,\ n-k)$を含むならば得点$2^k$点$(k=0,\ 1,\ \cdots,\ n)$が与えられ,$S$が領域$x+y<n$に含まれるならば得点0点が与えられるとする.得点の期待値を求めよ.
東京大学 国立 東京大学 2010年 第3問
2つの箱LとR,ボール30個,コイン投げで表と裏が等確率$\displaystyle \frac{1}{2}$で出るコイン1枚を用意する.$x$を0以上30以下の整数とする.Lに$x$個,Rに$30-x$個のボールを入れ,次の操作$(\sharp)$を繰り返す.

\mon[$(\sharp)$] 箱Lに入っているボールの個数を$z$とする.コインを投げ,表が出れば箱Rから箱Lに,裏が出れば箱Lから箱Rに,$K(z)$個のボールを移す.ただし,$0 \leqq z \leqq 15$のとき$K(z)=z$,$16 \leqq z \leqq 30$のとき$K(z)=30-z$とする.

$m$回の操作の後,箱Lのボールの個数が30である確率を$P_m(x)$とする.たとえば$\displaystyle P_1(15)=P_2(15)=\frac{1}{2}$となる.以下の問(1),(2)に答えよ.

(1)$m \geqq 2$のとき,$x$に対してうまく$y$を選び,$P_m(x)$を$P_{m-1}(y)$で表せ.
(2)$n$を自然数とするとき,$P_{2n}(10)$を求めよ.
信州大学 国立 信州大学 2010年 第3問
ある奇数の自然数$m$から始まる連続する奇数個の自然数の和が2010である.$m$を求めよ.
筑波大学 国立 筑波大学 2010年 第3問
$n$を自然数とし,1から$n$までの自然数の積を$n!$で表す.このとき以下の問いに答えよ.

(1)単調に増加する連続関数$f(x)$に対して,不等式$\displaystyle \int_{k-1}^k f(x) \, dx \leqq f(k)$を示せ.
(2)不等式$\displaystyle \int_1^n \log x\, dx \leqq \log n!$を示し,不等式$n^ne^{1-n} \leqq n!$を導け.
(3)$x \geqq 0$に対して,不等式$x^ne^{1-x} \leqq n!$を示せ.
奈良教育大学 国立 奈良教育大学 2010年 第2問
$y=x^3-mx+n$が$x$軸と接しているとする.

(1)$n^2$を$m$で表せ.
(2)$m,\ n$が自然数のときに,$n$が最小となるときの$m,\ n$を求めよ.
岩手大学 国立 岩手大学 2010年 第3問
数列$\{a_n\}$は等比数列で,その公比は0以上の実数であるとする.自然数$n$に対して
\[ S_n=\sum_{k=1}^n a_k, T_n=\sum_{k=1}^n (-1)^{k-1}a_k, U_n=\sum_{k=1}^n {a_k}^2 \]
とするとき,$n$が奇数ならば,$S_n \cdot T_n=U_n$が成り立つことを示せ.
岩手大学 国立 岩手大学 2010年 第3問
数列$\{a_n\}$は等比数列で,その公比は$0$以上の実数であるとする.自然数$n$に対して
\[ S_n=\sum_{k=1}^n a_k, T_n=\sum_{k=1}^n (-1)^{k-1}a_k, U_n=\sum_{k=1}^n {a_k}^2 \]
とするとき,$n$が奇数ならば,$S_n \cdot T_n=U_n$が成り立つことを示せ.
琉球大学 国立 琉球大学 2010年 第1問
行列$A=\biggl( \begin{array}{rr}
3 & 1 \\
-1 & 1
\end{array} \biggr),\ P=\biggl( \begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array} \biggr)$に対して以下の問いに答えよ.

(1)$U=P^{-1}AP$とする.$U$を求めよ.
(2)$n$を自然数とする.$U^n$を推測し,その結果を数学的帰納法によって証明せよ.
(3)$A^n$を求めよ.
香川大学 国立 香川大学 2010年 第3問
方程式$x^3-1=0$の解のうち,1と異なるものの1つを$\omega$とする.このとき,次の問に答えよ.

(1)$\omega^2+\omega+1=0$を示せ.
(2)$a,\ b$が実数のとき,$(a+b\omega)(a+b\omega^2)$を$a,\ b$を用いて表せ.
(3)$\displaystyle \frac{1}{1+2\omega}$を$c+d\omega \ (c,\ d \text{は実数})$の形で表せ.
(4)$z=m+n\omega \ (m,\ n \text{は自然数})$に対し,$\displaystyle \frac{1}{z}$が$p+q\omega \ (p,\ q \text{は整数})$の形で表されるとき,$z$を求めよ.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。