タグ「繰り返す」の検索結果

1ページ目:全77問中1問~10問を表示)
琉球大学 国立 琉球大学 2016年 第4問
$N$を$3$以上の自然数とする.

$1$から$N$までの数字が$1$つずつ書かれた$N$枚のカードを袋に入れ,「無作為に$1$枚のカードを取り出し,そのカードを袋に戻さず次のカードを取り出す」という作業を$3$枚のカードを取り出すまで繰り返す.取り出された$3$枚のカードに書かれた数の最大値を$X$とする.
また,$1$から$N$までの数字が$1$つずつ書かれた$N$枚のカードを袋に入れ,「無作為に$1$枚のカードを取り出してはそれに書かれた数を記録し,袋に戻す」という作業を$3$回行い,記録された数の最大値を$Y$とする.
$n$を$N$以下の自然数とする.$X=n$となる確率を$p_n$とし,$Y=n$となる確率を$q_n$とする.
次の問いに答えよ.

(1)$p_3,\ q_1,\ q_2,\ q_3$を求めよ.
(2)$p_n$と$q_n$を求めよ.
早稲田大学 私立 早稲田大学 2016年 第3問
$2$つの箱$\mathrm{A}$,$\mathrm{B}$があり,いずれの箱にも赤球が$1$個,白球が$3$個入っている.ここで,「それぞれの箱から$1$個の球を無作為に取り出しそれらを交換する」という試行を$n$回繰り返す.その結果,$2$つの箱$\mathrm{A}$,$\mathrm{B}$がともに元の状態に戻っている確率を$p_n$とする.このとき,正の整数$k$に対して,
\[ p_{k+1}=\frac{[カ]}{[キ]}p_k+\frac{[ク]}{[ケ]}(1-p_k) \]
となる.よって,
\[ p_n=\frac{[コ]}{7} \left( \frac{1}{[サ]} \right)^n+\frac{[シ]}{7} \quad (n \geqq 1) \]
となる.
東北医科薬科大学 私立 東北医科薬科大学 2016年 第1問
白玉$4$個と赤玉$2$個がはいっている袋から玉を$1$個取り出す試行を行う.このとき,次の問に答えなさい.

(1)取りだした球は袋に戻さないとして,この試行を$4$回繰り返す.$4$回目にはじめて赤玉が取り出される確率は$\displaystyle \frac{[ア]}{[イウ]}$である.
(2)取りだした球は袋に戻さないとして,この試行を$4$回繰り返す.このとき,赤玉がちょうど$2$個取り出される確率は$\displaystyle \frac{[エ]}{[オ]}$である.
(3)取りだした球は袋に戻さないとして,この試行を$4$回繰り返す.$4$回目に$2$個目の赤玉が取り出される確率は$\displaystyle \frac{[カ]}{[キ]}$である.
(4)取りだした球を袋に戻すとして,この試行を$4$回繰り返す.このとき,赤玉がちょうど$2$個取り出される確率は$\displaystyle \frac{[ク]}{[ケコ]}$である.
(5)取りだした球を袋に戻すとして,この試行を繰り返す.赤玉が取り出されたら試行は止める.$k$回目に赤玉が出て止める確率は$\displaystyle P_k=\frac{[サ]}{[シ]} \left( \frac{[ス]}{[セ]} \right)^{\mkakko{ソ}}$である.
また$\displaystyle S_k=(P_1)^2+(P_2)^2+\cdots +(P_k)^2=\frac{[タ]}{[チ]}-\frac{[ツ]}{[テ]} \left( \frac{[ト]}{[ナ]} \right)^{\mkakko{ニ}}$なので$S_k \geqq 0.19998$をみたす最小の$k$は$[ヌネ]$である.
ただし$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.
北海道薬科大学 私立 北海道薬科大学 2016年 第3問
食塩水が$100 \, \mathrm{g}$ある.これから$20 \, \mathrm{g}$を取って捨てた後に濃度が$10 \, \%$の食塩水を$20 \, \mathrm{g}$加える.食塩水の初めの濃度を$20 \, \%$として,この操作を$n$回($n=1,\ 2,\ 3,\ \cdots$)繰り返した後の食塩水に含まれる食塩の量を$x_n \, \mathrm{g}$とする.ただし,$\log_{10}2=0.3010$とする.

(1)$x_1$は$[アイ]$である.

(2)$\displaystyle x_{n+1}=\frac{[ウ]}{[エ]}x_n+[オ]$が成り立つ.この式を$x_{n+1}-p=q(x_n-p)$とおくと,定数$p,\ q$の値は
\[ p=[カキ],\quad q=\frac{[ク]}{[ケ]} \]
となる.これより
\[ x_n=[コサ]+[シス] \left( \frac{[セ]}{[ソ]} \right)^n \]
が得られる.
(3)食塩水の濃度を$11 \, \%$以下にするには,この操作を少なくとも$[タチ]$回繰り返す必要がある.
広島経済大学 私立 広島経済大学 2016年 第2問
袋$\mathrm{A}$には白玉$6$個と赤玉$3$個,袋$\mathrm{B}$には白玉$4$個と赤玉$2$個がそれぞれ入っている.このとき,次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)袋$\mathrm{A}$から$2$個の玉を同時に取り出すとき,$2$個とも同じ色の玉が出る確率は$\displaystyle \frac{[$8$]}{[$9$]}$である.
(2)袋$\mathrm{A}$,袋$\mathrm{B}$からそれぞれ$1$個ずつ玉を取り出すとき,違う色の玉が出る確率は$\displaystyle \frac{[$10$]}{[$11$]}$である.
(3)袋$\mathrm{A}$から$1$個の玉を取り出し,色を調べてから袋$\mathrm{A}$に戻す.この試行を$4$回繰り返すとき,少なくとも$1$回は白玉が出る確率は$\displaystyle \frac{[$12$]}{[$13$]}$である.
(4)袋$\mathrm{A}$から$1$個の玉を取り出して袋$\mathrm{B}$に入れ,よくかき混ぜる.次に,袋$\mathrm{B}$から$1$個の玉を取り出して袋$\mathrm{A}$に入れる.このとき,袋$\mathrm{A}$に入っている白玉と赤玉の個数が初めと変わらない確率は$\displaystyle \frac{[$14$]}{[$15$]}$である.
九州大学 国立 九州大学 2015年 第3問
袋の中に最初に赤玉$2$個と青玉$1$個が入っている.次の操作を考える.

(操作) 袋から$1$個の玉を取り出し,それが赤玉ならば代わりに青玉$1$個を袋に入れ,青玉ならば代わりに赤玉$1$個を袋に入れる.袋に入っている$3$個の玉がすべて青玉になるとき,硬貨を$1$枚もらう.

この操作を$4$回繰り返す.もらう硬貨の総数が$1$枚である確率と,もらう硬貨の総数が$2$枚である確率をそれぞれ求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2015年 第1問
下の問いに答えなさい.

(1)袋の中に$-1$と書かれたカードが$1$枚,$2$と書かれたカードが$2$枚,計$3$枚ある.この袋の中からカードを$1$枚取り出し,出た数を確認してから元に戻す.この試行を$4$回繰り返すとき,出た$4$つの数の和が$0$以下である確率を求めなさい.
(2)袋の中に$2$と書かれたカードが$1$枚,$4$と書かれたカードが$1$枚,$8$と書かれたカードが$1$枚,計$3$枚ある.この袋の中からカードを$1$枚取り出し,出た数を確認してから元に戻す.この試行を$4$回繰り返すとき,出た$4$つの数の積が$128$である確率を求めなさい.
日本女子大学 私立 日本女子大学 2015年 第4問
$n$を自然数とする.白玉$4$個と赤玉$8$個が入っている袋から,玉を$1$個取り出し,色を見てからもとにもどす試行を$n$回繰り返すとき,白玉が偶数回出る確率を$p_n$とする.ただし,$0$は偶数と考える.

(1)$p_{n+1}$を$p_n$で表せ.
(2)数列$\{p_n\}$の一般項を求めよ.
(3)極限$\displaystyle \lim_{n \to \infty} p_n$を求めよ.
埼玉工業大学 私立 埼玉工業大学 2015年 第3問
白玉$7$個,赤玉$3$個が入っている袋がある.

(1)袋の中から玉を$1$個取り出す操作を$4$回繰り返す.ただし,取り出した玉は毎回元に戻す.このとき,赤玉がちょうど$2$回出る確率は
\[ \frac{\kakkofour{フ}{ヘ}{ホ}{マ}}{5000} \]
である.
(2)袋の中から玉を$1$個取り出す操作を$4$回繰り返す.ただし,取り出した玉は毎回元に戻さない.このとき,赤玉がちょうど$2$回出る確率は
\[ \frac{[ミ]}{[ム][メ]} \]
である.
早稲田大学 私立 早稲田大学 2015年 第4問
$N$を$3$以上の自然数とする.$1$から$N$までの数字が書かれた$N$枚のカードを用意し,$\mathrm{A}$と$\mathrm{B}$の二人で次のようなゲームを行う.まず$\mathrm{A}$は,$1$から$N$までの数のうちから一つ選びそれを$K$とし,その数は$\mathrm{B}$に知らせずにおく.その後,以下の試行を何度も繰り返す.

$\mathrm{B}$は$N$枚のカードから無作為に一枚引いて$\mathrm{A}$にその数を伝え,$\mathrm{A}$は引かれた数字が$K$より大きければ「上」,$K$以下であれば「以下」と$\mathrm{B}$に答え,$\mathrm{B}$はその答から$K$の範囲を絞り込む.引いたカードは元へ戻す.
このとき,$n$回以下の試行で$\mathrm{B}$が$K$を確定できる確率を$P_N(n)$で表す.次の問に答えよ.

(1)$K=1$のとき,$P_3(1)$,$P_3(2)$,$P_3(3)$を求めよ.
(2)$K=2$のとき,$P_3(1)$,$P_3(2)$,$P_3(3)$を求めよ.
(3)$K=1,\ 2,\ \cdots,\ N$について$P_N(n)$を求めよ.
(4)自然数$c$に対して,極限値$\displaystyle \lim_{N \to \infty} P_N(cN)$を求めよ.
スポンサーリンク

「繰り返す」とは・・・

 まだこのタグの説明は執筆されていません。