タグ「線分」の検索結果

98ページ目:全1074問中971問~980問を表示)
一橋大学 国立 一橋大学 2010年 第3問
原点をOとする$xyz$空間内で,$x$軸上の点A,$xy$平面上の点B,$z$軸上の点Cを,次をみたすように定める.
\[ \angle \text{OAC} = \angle \text{OBC} = \theta, \quad \angle \text{AOB} = 2\theta, \quad \text{OC}=3 \]
ただし,Aの$x$座標,Bの$y$座標,Cの$z$座標はいずれも正であるとする.さらに,$\triangle$ABC内の点のうち,Oからの距離が最小の点をHとする.また,$t = \tan \theta$とおく.

(1)線分OHの長さを$t$の式で表せ.
(2)Hの$z$座標を$t$の式で表せ.
京都大学 国立 京都大学 2010年 第4問
点$\mathrm{O}$を中心とする正十角形において,$\mathrm{A}$,$\mathrm{B}$を隣接する$2$つの頂点とする.線分$\mathrm{OB}$上に$\mathrm{OP}^2=\mathrm{OB}\cdot \mathrm{PB}$を満たす点$\mathrm{P}$をとるとき,$\mathrm{OP}=\mathrm{AB}$が成立することを示せ.
大阪大学 国立 大阪大学 2010年 第2問
$0 < \theta < \displaystyle \frac{\pi}{2}$とする.2つの曲線
\[ C_1:x^2+3y^2=3, \quad C_2:\frac{x^2}{\cos^2 \theta} - \frac{y^2}{\sin^2 \theta} =2 \]
の交点のうち,$x$座標と$y$座標がともに正であるものをPとする.Pにおける$C_1,\ C_2$の接線をそれぞれ$\ell_1,\ \ell_2$とし,$y$軸と$\ell_1,\ \ell_2$の交点をそれぞれQ,Rとする.$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,線分QRの長さの最小値を求めよ.
神戸大学 国立 神戸大学 2010年 第5問
座標平面において,点P$_n(a_n,\ b_n) \ (n \geqq 1)$を
\begin{eqnarray}
\left(
\begin{array}{c}
a_1 \\
b_1
\end{array}
\right) &=& \left(
\begin{array}{c}
1 \\
0
\end{array}
\right) \nonumber \\
\left(
\begin{array}{c}
a_n \\
b_n
\end{array}
\right) &=& \frac{1}{2} \left(
\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}
\right) \left(
\begin{array}{c}
a_{n-1} \\
b_{n-1}
\end{array}
\right) \quad (n \geqq 2) \nonumber
\end{eqnarray}
で定める.このとき,以下の問に答えよ.

(1)$a_n,\ b_n$を$n$と$\theta$を用いて表せ.
(2)$\displaystyle \theta=\frac{\pi}{3}$のとき,自然数$n$に対して,線分P$_n$P$_{n+1}$の長さ$l_n$を求めよ.
(3)(2)で求めた$l_n$に対して,$\displaystyle \sum_{n=1}^\infty l_n$を求めよ.
静岡大学 国立 静岡大学 2010年 第2問
$xy$平面上で,点A$(-1,\ 0)$を中心とする円$C_1$と点B$(1,\ 0)$を中心とする円$C_2$が原点Oで外接している.点Pは円$C_1$上を,点Qは円$C_2$上を,それぞれ正の向きに回転する.今,P,Qが同時に原点を出発して,QはPの2倍の速さで回転する.このとき,次の問いに答えよ.

(1)$\angle \text{OAP} = \theta$とするとき,P,Qの座標をそれぞれ$\theta$を用いて表せ.
(2)線分PQの長さの最大値を求めよ.
静岡大学 国立 静岡大学 2010年 第2問
$\triangle$ABCの辺BC上に点D,辺AC上に点Eがあり,四角形ABDEが円Oに内接している.$\displaystyle \text{AE} = \text{DE},\ \text{AB} = \frac{42}{5},\ \text{AC} = 14,\ \text{BD} = \frac{6}{5}$であるとき,次の問いに答えよ.

(1)線分AEと線分CDの長さを求めよ.
(2)円Oの半径を求めよ.
静岡大学 国立 静岡大学 2010年 第3問
$a>0$とする.放物線$\displaystyle C : y = \frac{a}{2}x^2$上の点P$\displaystyle \left(1,\ \frac{a}{2} \right)$を通り,Pを通る接線に直交する直線を$\ell$,$y$軸と$\ell$との交点をQとするとき,次の問いに答えよ.

(1)直線$\ell$の方程式を$a$を用いて表せ.
(2)線分PQ,$y$軸および放物線$C$で囲まれる図形の面積を$S_1$とする.$S_1$の値を最小にする$a$の値を求めよ.
(3)直線$\ell$,$y$軸,直線$x = -1$および放物線$C$で囲まれる図形の面積を$S_2$とする.$S_2 = 2S_1$となる$a$の値を求めよ.
静岡大学 国立 静岡大学 2010年 第4問
$xy$平面上で,点A$(-1,\ 0)$を中心とする円$C_1$と点B$(1,\ 0)$を中心とする円$C_2$が原点Oで外接している.点Pは円$C_1$上を,点Qは円$C_2$上を,それぞれ正の向きに回転する.今,P,Qが同時に原点を出発して,QはPの2倍の速さで回転する.このとき,次の問いに答えよ.

(1)$\angle \text{OAP} = \theta$とするとき,P,Qの座標をそれぞれ$\theta$を用いて表せ.
(2)線分PQの長さの最大値を求めよ.
金沢大学 国立 金沢大学 2010年 第2問
$a$を正の定数とする.2つの放物線$C_1:y=x^2$と$C_2:y=(x-2)^2+4a$の交点をPとする.次の問いに答えよ.

(1)放物線$C_1$上の点Q$(t,\ t^2)$における接線の方程式を求めよ.さらに,その接線のうち$C_2$に接するものを$\ell$とする.$\ell$の方程式を求めよ.
(2)点Pを通り$y$軸に平行な直線を$m$とする.$\ell$と$m$の交点をRとするとき,線分PRの長さを求めよ.
(3)直線$\ell,\ m$と放物線$C_1$で囲まれた図形の面積を求めよ.
金沢大学 国立 金沢大学 2010年 第3問
Oを原点とする座標平面上の円$C:x^2+y^2=1$と直線$x+2y=1$の交点のうち,$x$座標の小さい方をP,他方をQとする.点P,Qにおける円$C$の接線をそれぞれ$\ell,\ m$とする.次の問いに答えよ.

(1)P,Qの座標を求めよ.また,$\ell$と$m$の交点Rの座標を求めよ.
(2)線分ORと$C$の交点をSとする.Sの座標を求めよ.また,$\triangle$QRSの面積を求めよ.
(3)$\angle \text{PQS}=\angle \text{RQS}$であることを示せ.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。