タグ「線分」の検索結果

91ページ目:全1074問中901問~910問を表示)
山梨大学 国立 山梨大学 2011年 第5問
放物線$C:y=x^2$上の点$\mathrm{P}_1$の座標を$(1,\ 1)$とする.定数$k \ (0<k<1)$に対して,$\mathrm{P}_1$と点$(0,\ k)$を通る直線と$C$との交点を$\mathrm{P}_2$とする.ただし,$\mathrm{P}_2$は$\mathrm{P}_1$とは異なる点とする.$\mathrm{P}_2$と点$(0,\ k^2)$を通る直線と$C$との交点を$\mathrm{P}_3$とする.ただし,$\mathrm{P}_3$は$\mathrm{P}_2$とは異なる点とする.以下同様にして,自然数$n$に対し,$\mathrm{P}_n$と点$(0,\ k^n)$を通る直線と$C$との交点を$\mathrm{P}_{n+1}$とする.ただし,$\mathrm{P}_{n+1}$は$\mathrm{P}_n$とは異なる点とする.

(1)$\mathrm{P}_{2n-1}$および$\mathrm{P}_{2n}$の座標を$n$と$k$を用いて表せ.
(2)線分$\mathrm{P}_n \mathrm{P}_{n+1}$の長さを$l_n$とする.${l_{2n-1}}^2$および${l_{2n}}^2$を$n$と$k$を用いて表せ.
(3)$\displaystyle k=\frac{1}{2}$のとき,無限級数${l_1}^2+{l_2}^2+\cdots +{l_n}^2+\cdots$の和を求めよ.
浜松医科大学 国立 浜松医科大学 2011年 第1問
$2$次曲線$C$が媒介変数$\theta$を用いて,
\[ x=3+5 \cos \theta,\quad y=2+3 \sin \theta \quad (0 \leqq \theta \leqq 2\pi) \]
と表されている.このとき,次の問いに答えよ.

(1)曲線$C$の方程式を$x,\ y$を用いて表せ.また,$C$を座標平面上に図示せよ.
(2)曲線$C$上の点$\mathrm{P}(3+5 \cos \theta,\ 2+3 \sin \theta)$における$C$の接線$\ell$の方程式は,
\[ \frac{\cos \theta}{5}(x-3)+\frac{\sin \theta}{3}(y-2)=1 \]
となることを示せ.
(3)曲線$C$の焦点を$\mathrm{F}_1$,$\mathrm{F}_2$とする.$i=1,\ 2$に対し,$\mathrm{F}_i$を通り,接線$\ell$に垂直な直線$m_i$の方程式を求めよ.
(4)$i=1,\ 2$に対し,直線$m_i$と$\ell$との交点を$\mathrm{Q}_i$とする.点$\mathrm{O}^\prime(3,\ 2)$とするとき,線分$\mathrm{O}^\prime \mathrm{Q}_i$の長さを求めよ.
(5)$\mathrm{P}$が曲線$C$を一周するとき,線分$\mathrm{Q}_1 \mathrm{Q}_2$の長さの最大値,最小値,およびそのときの点$\mathrm{P}$をそれぞれ求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第2問
$\mathrm{AB}=4$,$\mathrm{BC}=5$,$\mathrm{CA}=6$であるような$\triangle \mathrm{ABC}$において,$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$,辺$\mathrm{CA}$の中点を$\mathrm{E}$,線分$\mathrm{AD}$と線分$\mathrm{BE}$の交点を$\mathrm{F}$とする.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を求めよ.
(2)$\overrightarrow{\mathrm{AD}}=t \overrightarrow{\mathrm{AB}}+(1-t) \overrightarrow{\mathrm{AC}} (0 \leqq t \leqq 1)$とおくとき,内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AD}}$および$\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}$を$t$を用いて表せ.
(3)$t$の値を求めよ.
(4)$\mathrm{AF}:\mathrm{FD}$を求めよ.
大分大学 国立 大分大学 2011年 第2問
直線$\ell_1:y=mx+3 (m>0)$が,点$\mathrm{A}(5,\ 3)$を中心とする円$C_1$に接している.その接点を$\mathrm{P}$とする.直線$\ell_1$と$y$軸との交点を$\mathrm{Q}$,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線$\ell_2$と$x$軸との交点を$\mathrm{R}$とする.

(1)円$C_1$の半径$r$を$m$を用いて表しなさい.
(2)円$C_1$が$x$軸と異なる$2$点で交わるような$m$の値の範囲を求めなさい.
(3)線分$\mathrm{QR}$の中点$\mathrm{S}$の座標を求めなさい.
(4)$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円$C_2$の中心と円$C_1$の中心との距離を$d$とする.$d$の最小値とそのときの$m$の値を求めなさい.
早稲田大学 私立 早稲田大学 2011年 第2問
四面体$\mathrm{OABC}$の辺$\mathrm{AB}$,辺$\mathrm{OC}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とし,$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とする.また,線分$\mathrm{OG}$と線分$\mathrm{MN}$の交点を$\mathrm{P}$とするとき,
\[ \overrightarrow{\mathrm{OP}} = \frac{1}{[ウ]} \overrightarrow{\mathrm{OA}} + \frac{1}{[エ]} \overrightarrow{\mathrm{OB}} + \frac{1}{[オ]} \overrightarrow{\mathrm{OC}} \]
である.
早稲田大学 私立 早稲田大学 2011年 第6問
図のように,点$\mathrm{O}$を中心とする半径$1$の円に内接する正$9$角形の頂点$\mathrm{A}_1$,$\mathrm{A}_2$,$\cdots$,$\mathrm{A}_9$から,長さが最大となる対角線を$2$本ずつ引き,それらの交点を$\mathrm{B}_1$,$\mathrm{B}_2$,$\cdots$,$\mathrm{B}_9$とする.これらの点を$\mathrm{A}_1 \to \mathrm{B}_1 \to \mathrm{A}_2 \to \mathrm{B}_2 \to \cdots \to \mathrm{A}_9 \to \mathrm{B}_9 \to \mathrm{A}_1$の順に線分で結んでできた図形を星型$S$とよぶ.ここで,$\tan 10^\circ=a$とするとき,$\triangle \mathrm{OA}_1 \mathrm{B}_1$の辺$\mathrm{OA_1}$を底辺としたときの高さを$h$とすると
\[ h=\frac{[ナ]a}{[ニ]-a^{[ヌ]}} \]
である.よって,星型$S$の面積は$[ネ]h$である.
(図は省略)
早稲田大学 私立 早稲田大学 2011年 第1問
次の$[ ]$にあてはまる数または数式を解答用紙の所定欄に記入せよ.

(1)平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が点$\mathrm{O}$を中心とする半径$1$の円周上にあり,
\[ 3 \overrightarrow{\mathrm{OA}}+7 \overrightarrow{\mathrm{OB}}+5 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
を満たしている.このとき線分$\mathrm{AB}$の長さは[ア]である.
(2)$xy$平面上の曲線$y=e^x$と$y$軸および直線$y=e$で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積は[イ]である.
(3)碁石を$n$個一列に並べる並べ方のうち,黒石が先頭で白石どうしは隣り合わないような並べ方の総数を$a_n$とする.ここで,$a_1=1$,$a_2=2$である.
(4)立方体の各辺の中点は全部で$12$個ある.頂点がすべてこれら$12$個の点のうちのどれかであるような正多角形は全部で[エ]個ある.
早稲田大学 私立 早稲田大学 2011年 第3問
下図のように$9$個の点$\mathrm{A}$,$\mathrm{B}_1$,$\mathrm{B}_2$,$\mathrm{B}_3$,$\mathrm{B}_4$,$\mathrm{C}_1$,$\mathrm{C}_2$,$\mathrm{C}_3$,$\mathrm{C}_4$とそれらを結ぶ$16$本の線分からなる図形がある.この図形上にある物体$\mathrm{U}$は,毎秒ひとつの点から線分で結ばれている別の点へ移動する.ただし$\mathrm{U}$は線分で結ばれているどの点にも等確率で移動するとする.最初に点$\mathrm{A}$にあった物体$\mathrm{U}$が,$n$秒後に点$\mathrm{A}$にある確率を$a_n$とすると,$a_0=1$,$a_1=0$である.このとき$a_n (n \geqq 2)$を求めよ.
(図は省略)
早稲田大学 私立 早稲田大学 2011年 第4問
点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 3)$を頂点とする三角形$\mathrm{OAB}$がある.三角形$\mathrm{OAB}$の面積を$2$等分する線分の長さの最大値と最小値を求めよ.
早稲田大学 私立 早稲田大学 2011年 第2問
正の定数$a,\ b,\ c$を用いて,$\triangle$ABCの内部の点Pは
\[ a\,\overrightarrow{\text{PA}} +b\, \overrightarrow{\text{PB}} +c\, \overrightarrow{\text{PC}} = \overrightarrow{0} \]
と表すことができる.ただし,$\overrightarrow{0}$は零ベクトルである.\\
\quad 次の問に答えよ.

(1)直線APと辺BCの交点をQとする.

(2)線分の長さの比$\text{BQ}:\text{QC}=t:1-t$とおくと
\[ \overrightarrow{\text{PQ}} = [\maru{1]} \overrightarrow{\text{PA}} + [\maru{2]} \overrightarrow{\text{PB}} \]
\quad と表せる.\maru{1},\ \maru{2}にあてはまる$t$の式を$a,\ b,\ c$を用いて表せ.
(3)線分の長さの比$\text{BQ}:\text{QC}$を$a,\ b,\ c$を用いて表せ.
(4)線分の長さの比$\text{AP}:\text{PQ}$を$a,\ b,\ c$を用いて表せ.


(5)面積の比$\triangle \text{PBC}: \triangle \text{PCA}: \triangle \text{PAB}$を$a,\ b,\ c$を用いて表せ.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。