タグ「線分」の検索結果

76ページ目:全1074問中751問~760問を表示)
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~サに当てはまる数または式を記入せよ.

(1)$\displaystyle x=\frac{\sqrt{5}-1}{\sqrt{5}+1},\ y=\frac{\sqrt{5}+1}{\sqrt{5}-1}$のとき,$x^3+y^3$の値は$[ア]$である.
(2)互いに異なる定数$a,\ b,\ c$が$\displaystyle \frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}$を満たすとき,$\displaystyle \frac{(b+c)(c+a)(a+b)}{abc}$のとる値は$[イ]$である.ただし,$abc \neq 0$とする.
(3)白玉$3$個と黒玉$3$個が入っている袋から玉を$1$個取り出し,色を調べてもとに戻す.この試行を$3$回繰り返すとき,白玉を$2$回取り出す確率は$[ウ]$である.
(4)整式$P(x)$を$x-1$で割った余りが$-2$,$x-2$で割った余りが3,$x-3$で割った余りが8ならば,$P(x)$を$(x-1)(x-2)(x-3)$で割った余りは$[エ]$である.
(5)数列$\{a_n\}$は$a_1=-7$と漸化式$2a_{n+1}=3a_n+8 \ (n=1,\ 2,\ 3,\ \cdots)$で定められている.この数列の一般項は$a_n=[オ]$である.
(6)平行四辺形ABCDにおいて,辺ABを$2:1$に内分する点をE,辺BCの中点をF,辺CDの中点をGとする.線分CEと線分FGの交点をHとすると,$\overrightarrow{\mathrm{AH}}=[カ]\overrightarrow{\mathrm{AB}}+[キ]\overrightarrow{\mathrm{AD}}$となる.
(7)関数$f(x)=x^2-2ax+a+6$がすべての実数$x$に対して$f(x)>0$を満たすならば,定数$a$の値の取りうる範囲は,$[ク]<a<[ケ]$となる.
(8)関数$f(x)=ax^2+bx+1$が$f(1)=-6$と$\displaystyle \int_0^3 \{ f^\prime(x) \}^2 \, dx=63$を満たすならば,定数$a,\ b$の値は$a=[コ],\ b=[サ]$である.ただし,$f^\prime(x)$は$f(x)$の導関数を表す.
自治医科大学 私立 自治医科大学 2012年 第15問
辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$のそれぞれの長さが,$6$,$5$,$7$となる三角形$\mathrm{ABC}$について考える.$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とし,線分$\mathrm{AD}$の長さを$L$とするとき,$\displaystyle \frac{12L}{\sqrt{105}}$の値を求めよ.
自治医科大学 私立 自治医科大学 2012年 第17問
直線:$2x-y+3=0$と円:$x^2+y^2+10x-2y+10=0$との相異なる$2$つの交点を$\mathrm{A}$,$\mathrm{B}$とする.線分$\mathrm{AB}$の長さを$a$とするとき,$\sqrt{5}a$の値を求めよ.
北海学園大学 私立 北海学園大学 2012年 第3問
三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$を$3:2$に内分する点を$\mathrm{M}$,辺$\mathrm{AC}$を$2:1$に内分する点を$\mathrm{N}$とし,線分$\mathrm{BN}$と線分$\mathrm{CM}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AM}}$,$\overrightarrow{\mathrm{AN}}$,$\overrightarrow{\mathrm{BC}}$をそれぞれ$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{AP}}$,$\overrightarrow{\mathrm{CP}}$をそれぞれ$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(3)直線$\mathrm{AP}$と辺$\mathrm{BC}$の交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{AQ}}$,$\overrightarrow{\mathrm{BQ}}$をそれぞれ$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
北海学園大学 私立 北海学園大学 2012年 第4問
$f(x)=(x-1)(x-\sqrt{3})$とする.点$\mathrm{A}(0,\ \sqrt{3})$における放物線$y=f(x)$の接線を$\ell$とするとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)定積分$\displaystyle \int_0^1 f(x) \, dx$を求めよ.
(3)接線$\ell$と$x$軸との交点を$\mathrm{B}$とし,$\mathrm{C}(1,\ 0)$とする.放物線$y=f(x)$,接線$\ell$,および線分$\mathrm{BC}$で囲まれた図形の面積を求めよ.
東北学院大学 私立 東北学院大学 2012年 第4問
円$\mathrm{O}:x^2+y^2=25$の上の$2$点$\mathrm{A}(5,\ 0)$,$\mathrm{B}(-3,\ 4)$をとる.次の問いに答えよ.

(1)線分$\mathrm{AB}$を$1:t (t>0)$に外分する点を$\mathrm{C}$とするとき,$\mathrm{C}$の座標を$t$を用いて表せ.
(2)点$\mathrm{B}$における円$\mathrm{O}$の接線と点$\mathrm{C}$との距離が$12$であるとき,$t$の値を求めよ.
東北学院大学 私立 東北学院大学 2012年 第2問
動点$\mathrm{P}$が$xy$平面上を図のように$\mathrm{A}_0(0,\ 0)$から,まず$x$軸に沿って$\mathrm{A}_1(2^{10},\ 0)$まで進み,次に左に直角に曲がって$\mathrm{A}_2(2^{10},\ 2^9)$まで進み,さらに左に直角に曲がって$\mathrm{A}_3(2^{10}-2^8,\ 2^9)$まで進む.以下同様に線分の長さが
\[ \overline{\mathrm{A}_n \mathrm{A}_{n+1}}=\frac{1}{2} \overline{\mathrm{A}_{n-1} \mathrm{A}_{n}} \quad (n \geqq 1) \]
を満たしながら左に直角に曲がりつつ進むとき,以下の問いに答えよ.

(1)$\overline{\mathrm{A}_n \mathrm{A}_{n+1}}<1$を満たす最小の$n$を求めよ.
(2)点$\mathrm{A}_6$の座標を求めよ.
(3)点$\mathrm{A}_{2k} (k \geqq 1)$の座標を$k$の式で表せ.
(図は省略)
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)関数$f(\theta)=\sin^2 \theta-\sqrt{3} \cos \theta+2 (0 \leqq \theta \leqq \pi)$は,$\theta=[ア]$で最大値$[イ]$をとる.
(2)実数$x,\ y$が$2x+3y+1=0$を満たすとき,$4^x+8^y$は$x=[ウ]$で最小値$[エ]$をとる.
(3)実数$a$に対して,$3$次方程式$9x^3-3x^2+ax-1=0$の$1$つの解が$\displaystyle \frac{1}{3}$のとき,$a=[オ]$である.また,この方程式の$\displaystyle \frac{1}{3}$以外の解を$\alpha,\ \beta$とするとき,$\displaystyle \alpha^{18}+\beta^{18}=\frac{[カ]}{3^9}$である.
(4)平面上に,原点$\mathrm{O}$を中心とする半径$1$の円$C$と,点$(3,\ 0)$を通る傾き$m$の直線$\ell$がある.$\ell$と$C$が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わるとき,$m$の範囲は$[キ]$である.また,線分$\mathrm{AB}$の長さが$\displaystyle \frac{\sqrt{10}}{5}$のとき,$m=[ク]$である.
(5)$a$を$0$でない実数とする.関数$f(x)=a(x^3-3x^2+a)$の極小値が$1$であり,極大値が$7$より大きいとき,$a=[ケ]$で,その極大値は$[コ]$である.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$\triangle \mathrm{ABC}$において,$\mathrm{AC}=10$,$\mathrm{BC}=6$,$\displaystyle \cos A=\frac{4}{5}$とし,辺$\mathrm{AC}$の中点を$\mathrm{M}$とする.このとき,$\tan A=[ア]$であり,$\triangle \mathrm{BCM}$の外接円の半径は$[イ]$である.
(2)関数$f(x)=|x-1|-|x+2|+|x-3|$が,$f(a)=0$を満たすとき,$a=[ウ]$である.また,$y=f(x)$のグラフと$x$軸で囲まれた図形の面積は$[エ]$である.
(3)$k$を正の実数とする.$3$次関数$f(x)=kx^3+3kx^2-9kx+3$の極大値は$[オ]$である.また,$f(x)=0$が正の実数解を持つような$k$の値の範囲は$[カ]$である.
(4)円$C:x^2+(y-2)^2=1$と点$\mathrm{A}(2,\ 0)$がある.この$C$上の点$\mathrm{P}$と$\mathrm{A}$を結ぶ線分$\mathrm{PA}$の中点を$\mathrm{Q}$とするとき,$\mathrm{Q}$の軌跡の方程式は$[キ]$である.また,$\mathrm{Q}$の軌跡と$C$が交わる点の$x$座標は$[ク]$である.
(5)$a>1$に対して最小値が$2$である関数$f(x)=\log_a (x^2-2x+3)$と,関数$g(x)=\log_2 (2x-1)^2$がある.このとき,$a=[ケ]$であり,$f(x)=g(x)$を満たす$x$の値は$[コ]$である.
甲南大学 私立 甲南大学 2012年 第2問
$a$を正の実数とする.空間内の$3$点$\mathrm{A}(0,\ 1,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$を通る平面を$\alpha$とし,点$\mathrm{P}(0,\ 1-a,\ 0)$から平面$\alpha$に下ろした垂線の足を$\mathrm{H}$とする.このとき,以下の問いに答えよ.

(1)等式$\overrightarrow{\mathrm{PH}}=\overrightarrow{\mathrm{PA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$が成り立つように実数$s,\ t$の値を定めよ.
(2)線分$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,点$\mathrm{H}$は直線$\mathrm{AM}$上にあることを示せ.
(3)実数$a$が$0<a<3$の範囲を動くとき,四面体$\mathrm{BCHP}$の体積の最大値を求めよ.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。