タグ「線分」の検索結果

74ページ目:全1074問中731問~740問を表示)
山口大学 国立 山口大学 2012年 第3問
$a<b$とする.放物線$C:y=x^2$上の点$\mathrm{A}(a,\ a^2)$における接線を$\ell_1$とし,点$\mathrm{B}(b,\ b^2)$における接線を$\ell_2$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{P}$とするとき,次の問いに答えなさい.

(1)$\mathrm{P}$の座標を$a,\ b$を用いて表しなさい.
(2)$\mathrm{P}$の$x$座標を$p$とし,点$\mathrm{D}(p,\ p^2)$における放物線$C$の接線を$\ell_3$とする.$\ell_1$と$\ell_3$の交点を$\mathrm{Q}$,$\ell_2$と$\ell_3$の交点を$\mathrm{R}$とするとき,$\displaystyle \frac{\mathrm{AB}}{\mathrm{QR}}$を求めなさい.
(3)放物線$C$と線分$\mathrm{AB}$で囲まれた図形の面積を$S_1$,三角形$\mathrm{PQR}$の面積を$S_2$とする.$\displaystyle \frac{S_2}{S_1}$を求めなさい.
早稲田大学 私立 早稲田大学 2012年 第3問
$x$-$y$平面上に$3$点$\mathrm{O}(0,\ 0)$,$\displaystyle \mathrm{A} \left( \frac{1}{\sqrt{2}},\ 0 \right)$,$\displaystyle \mathrm{B} \left( 0,\ \frac{1}{\sqrt{2}} \right)$をとり,図のように,$\triangle \mathrm{OAB}$の各辺上または内部に,$\mathrm{DE} \para \mathrm{OB}$かつ$\angle \mathrm{DCE}$を直角とする二等辺三角形$\mathrm{CDE}$をとる.点$\mathrm{C}$,$\mathrm{E}$はそれぞれ$\mathrm{OB}$,$\mathrm{AB}$上の点とする.線分$\mathrm{CE}$の長さを$m (>0)$とおくとき,次の各問に答えよ.

(1)$m$の最大値を求めよ.
(2)$s,\ t$を正数とし,ベクトル$\overrightarrow{\mathrm{OC}}+s \overrightarrow{\mathrm{CD}}+t \overrightarrow{\mathrm{CE}}$を$[ア] \overrightarrow{\mathrm{OA}}+[イ] \overrightarrow{\mathrm{OB}}$と表すとき,空欄$[ア]$,$[イ]$をそれぞれ$s,\ t$および$m$の式で表せ.
(3)等式$\overrightarrow{\mathrm{OC}}+s \overrightarrow{\mathrm{CD}}+t \overrightarrow{\mathrm{CE}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$をみたす$s$,$t$をそれぞれ$m$の式で表せ.
(4)(3)で求めた$s,\ t$を用いて,点$\mathrm{P}(x,\ y)$を$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$によって定める.このとき,$\displaystyle \frac{y}{x}$を$\displaystyle \frac{1}{m}$の式で表せ.
(5)(4)における点$\mathrm{P}(x,\ y)$の軌跡は$x,\ y$の方程式
\[ (x+[ウ])^2+(y-[エ])^2=[オ] \]
で表される.このとき,空欄$[ウ]$,$[エ]$,$[オ]$にあてはまる数値を求めよ.
(図は省略)
早稲田大学 私立 早稲田大学 2012年 第3問
曲線$x^2+y^2=100$($x \geqq 0$かつ$y \geqq 0$)を$C$とする.点$\mathrm{P},\ \mathrm{Q}$は$C$上にあり,線分$\mathrm{PQ}$の中点を$\mathrm{R}$とする.ただし,点$\mathrm{P}$と点$\mathrm{Q}$が一致するときは,点$\mathrm{R}$は点$\mathrm{P}$に等しいものとする.

(1)点$\mathrm{P}$の座標が$(6,\ 8)$であり,点$\mathrm{Q}$が$C$上を動くとき,点$\mathrm{R}$の軌跡は,
\[ (x-[キ])^2+(y-[ク])^2=[ケ],\ [コ] \leqq x \leqq [サ],\ [シ] \leqq y \leqq [ス] \]
である.
(2)点$\mathrm{P}$,$\mathrm{Q}$が$C$上を自由に動くとき,点$\mathrm{R}$の動く範囲の面積は,
\[ \frac{[セ]}{[ソ]}\pi + [タ] \]
である.ただし,$[ソ]$はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第3問
曲線$x^2+y^2=100\ (x \geqq 0 \text{かつ} y \geqq 0)$を$C$とする.点P,Qは$C$上にあり,線分PQの中点をRとする.ただし,点Pと点Qが一致するときは,点Rは点Pに等しいものとする.

(1)点Pの座標が$(6,\ 8)$であり,点Qが$C$上を動くとき,点Rの軌跡は,
\[ \left( x-[キ]\right)^2 + \left(y-[ク]\right)^2 = [ケ],\]
\[ [コ] \leqq x \leqq [サ], \ [シ] \leqq y \leqq [ス] \]
である.
(2)点P,Qが$C$上を自由に動くとき,点Rの動く範囲の面積は,
\[ \frac{[セ]}{[ソ]} \pi + [タ] \]
である.ただし,[ソ]はできるだけ小さな自然数で答えること.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:4$に内分する点を$\mathrm{D}$,辺$\mathrm{OB}$を$3:1$に内分する点を$\mathrm{E}$とする.また,$2$つの線分$\mathrm{AE}$と$\mathrm{BD}$の交点を$\mathrm{P}$として,直線$\mathrm{OP}$が辺$\mathrm{AB}$と交わる点を$\mathrm{F}$とする.このとき,
\[ \overrightarrow{\mathrm{OP}} = \frac{[(15)][(16)]}{[(17)][(18)]} \overrightarrow{\mathrm{OA}} + \frac{[(19)][(20)]}{[(21)][(22)]} \overrightarrow{\mathrm{OB}} \]
と表される.また三角形$\mathrm{OAF}$の面積を$S_1$とし,三角形$\mathrm{OFB}$の面積を$S_2$とするとき
\[ \frac{S_2}{S_1} = \frac{[(23)][(24)]}{[(25)][(26)]} \]
である.さらに三角形$\mathrm{POA}$の面積を$S_3$とし,三角形$\mathrm{PFB}$の面積を$S_4$とするとき
\[ \frac{S_4}{S_3} = \frac{[(27)][(28)]}{[(29)][(30)]} \]
である.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
次の各問いに答えよ.

(1)3つの行列の積
\[ \left(
x \quad y
\right) \left( \begin{array}{cc}
2 & a \\
a & 1
\end{array}
\right)
\left(
\begin{array}{c}
x \\
y
\end{array}
\right) \]
の成分が任意の実数$x,\ y$に対し0以上となるような実数$a$の範囲を不等式で表すと[ア]となる.
(2)$\angle B$が直角の直角三角形ABCの2辺AB,\ BCの長さをそれぞれ$3,\ 1$とする.また,$0<x<1$を満たす$x$に対し線分BCを$1:x$に外分する点をDとする.いま,$\angle \text{CAD}=2 \angle\text{BAC}$が成り立っているとすると,$x=[イ]$であり,$\triangle$ACDの外接円の半径は[ウ]である.
(3)関数$f(x),\ g(x)$が
\[
\left\{
\begin{array}{l}
f(x) = xe^x + 2x \displaystyle\int_0^2|g(t)|\, dt - 1 \\
\\
g(x) = x^2 -x \displaystyle\int_0^1 f(t)\,dt
\end{array}
\right.
\]
を満たすとき,$\displaystyle\int_0^2 |g(t)|\, dt$の値は[エ]または[オ]である.求める過程も解答欄(3)に書きなさい.
上智大学 私立 上智大学 2012年 第1問
次の各問いに答えなさい.

(1)関数
\[ f(x) = 2\sqrt{3}\,\sin^2\frac{x}{2}-\sin x+a \quad (0 \leqq x \leqq \pi) \]
の最小値が$\sqrt{3}$であるとする.このとき,$a=[ア]$であり,$f(x)$が最小となるのは$x=\displaystyle\frac{\pi}{[イ]}$のときである.
(2) $n$を$5$以上の自然数とする.$1$以上$n$以下の自然数から互いに隣り合わない$2$つを選ぶ組合せは
\[ \frac{1}{[ウ]} \left( n- [エ]\right) \left( n- [オ] \right) \]
通りあり,どの$2$つも隣り合わない$3$つを選ぶ組合せは
\[ \frac{1}{[カ]} \left( n- [キ]\right) \left( n- [ク] \right) \left( n- [ケ] \right) \]
通りある.ただし,$[エ] < [オ], \quad [キ] < [ク] < [ケ]$とする.
(3)三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$4:3$に内分する点を$\mathrm{D}$とし,線分$\mathrm{AD}$と$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\mathrm{AP}:\mathrm{PD}=s:(1-s)$,$\mathrm{BP}:\mathrm{PC}=t:(1-t)$とするとき
\[ \displaystyle s=\frac{[コ]}{[サ]}, \quad t=\frac{[シ]}{[ス]} \]
である.また,$\mathrm{OP}$の延長と辺$\mathrm{AB}$との交点を$\mathrm{Q}$とするとき
\[ \overrightarrow{\mathrm{OQ}} = \frac{[セ]}{[ソ]} \overrightarrow{\mathrm{OP}} \]
である.
早稲田大学 私立 早稲田大学 2012年 第4問
円$C$とその内部の点$\mathrm{P}_0$が与えられている.初め$\mathrm{P}_0$にある動点が,円周上の点$\mathrm{P}_1$まで線分$\mathrm{P}_0 \mathrm{P}_1$上を動き,$\mathrm{P}_1$からは,$\mathrm{P}_1$における円$C$の接線$\ell_1$と線分$\mathrm{P}_0 \mathrm{P}_1$のなす角が$\ell_1$と線分$\mathrm{P}_1 \mathrm{P}_2$のなす角に等しくなるように向きを変えて,円周上の点$\mathrm{P}_2$まで線分$\mathrm{P}_1 \mathrm{P}_2$上を動く(図例$1$).以下,自然数$n$について,円周上の点$\mathrm{P}_n$に至ったあとは,$\mathrm{P}_n$における円$C$の接線$\ell_n$と線分$\mathrm{P}_{n-1} \mathrm{P}_n$のなす角が$\ell_n$と線分$\mathrm{P}_n \mathrm{P}_{n+1}$のなす角に等しくなるように向きを変え,円周上の点$\mathrm{P}_{n+1}$まで線分$\mathrm{P}_n \mathrm{P}_{n+1}$上を動き,この動きをくり返す(図例$2$).線分$\mathrm{P}_0 \mathrm{P}_1$と接線$\ell_1$のなす角を$\alpha (\displaystyle 0 \leqq \alpha \leqq \frac{\pi}{2})$とする.

(1)$\mathrm{P}_m=\mathrm{P}_1$となる$3$以上の自然数$m$が存在するような角$\alpha$をすべて決定せよ.
(2)点$\mathrm{P}_1$の位置によって角$\alpha$は変化し得る.角$\alpha$が最大となる$\mathrm{P}_1$の位置,および最小となる$\mathrm{P}_1$の位置を求めよ.
(3)$\mathrm{P}_4=\mathrm{P}_1$となる点$\mathrm{P}_1$がとれるような点$\mathrm{P}_0$の存在範囲を求めよ.
(図は省略)
東京理科大学 私立 東京理科大学 2012年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}$,$\mathrm{B}$があり,$2$つのベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$が
\[ |\overrightarrow{\mathrm{OA}}| = 2\sqrt{3}, \quad |\overrightarrow{\mathrm{OB}}|=\sqrt{15}, \quad \overrightarrow{\mathrm{OA}}\cdot\overrightarrow{\mathrm{OB}} = 8 \]
を満たしているとする.ここで,$|\overrightarrow{\mathrm{OA}}|,\ |\overrightarrow{\mathrm{OB}}|$はそれぞれ$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$の大きさを表し,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$は$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積を表すものとする.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\theta$とおくと
\[ \cos \theta = \frac{[ア]}{[イウ]} \sqrt{[エ]} \]
となる.\\
\quad また,$\triangle \mathrm{OAB}$の面積は$\sqrt{[オカ]}$である.
(2)線分$\mathrm{AB}$上の点$\mathrm{C}$を$\overrightarrow{\mathrm{OC}}$と$\overrightarrow{\mathrm{AB}}$が垂直となるようにとる.このとき,点$\mathrm{C}$は線分$\mathrm{AB}$を$[キ]:[ク]$に内分する点である.
明治大学 私立 明治大学 2012年 第1問
以下の$[ ]$にあてはまる値を答えよ.

(1)座標平面上の点$\mathrm{P}(x,\ y)$が媒介変数$\theta$を用いて
\[ \begin{array}{l}
x=-\sin \theta+2\cos \theta \\
y= 2\sin \theta+3\cos \theta
\end{array} \]
と表されているとする.このとき,原点を$\mathrm{O}$とすると
\[ \mathrm{OP}^2 = [ア]\sqrt{2} \sin \left( [イ]\theta + \frac{\pi}{[ウ]} \right) + [エ] \]
が成り立つ.
(2)$4$つのサイコロを投げて,出た目の積を$m$とする.

(3)$m=10$となる確率は$\displaystyle\frac{[オ]}{[カ][キ][ク]}$である.また,$m=60$となる確率は$\displaystyle\frac{[ケ]}{[コ][サ][シ]}$である.
(4)$m$が$10$と互いに素になる確率は$\displaystyle\frac{[ス]}{[セ][ソ]}$である.また,$m$が$10$の倍数となる確率は$\displaystyle\frac{[タ][チ][ツ]}{[テ][ト][ナ]}$である.\\
ただし,自然数$a$と$b$が互いに素であるとは,$a$と$b$が$1$以外の公約数を持たないことをいう.

(5)$xy$座標平面上で,原点$\mathrm{O}$を中心とする半径$1$の円$\mathrm{O}$に正三角形$\mathrm{ABC}$が内接していて,三点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$はその順に反時計回りに位置している.点$\mathrm{A}$の$x$座標と$y$座標はともに正とする.直線$\mathrm{AC}$と$y$軸は点$\mathrm{D}$で交わっていて,点$\mathrm{D}$を通り直線$\mathrm{BC}$に平行な直線は,円$\mathrm{O}$に点$\mathrm{E}$で接するという.このとき,線分$\mathrm{DE}$の長さは$[ニ]$であって,$\tan (\angle \mathrm{ODE}) = [ヌ]$となる.ゆえに,点$\mathrm{A}$の$y$座標は$[ネ]$である.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。