タグ「線分」の検索結果

61ページ目:全1074問中601問~610問を表示)
日本女子大学 私立 日本女子大学 2013年 第3問
平面上に$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 1)$がある.$t$を$\displaystyle 0 \leqq t<\frac{1}{2}$を満たす実数とする.点$\mathrm{P}$を線分$\mathrm{OA}$上で$\mathrm{AP}=t$となるようにとる.直線$y=1$上の$\mathrm{A}$より右側の部分に点$\mathrm{S}$を$\mathrm{PO}=\mathrm{PS}$となるようにとる.$\angle \mathrm{OPS}$の二等分線が$x$軸と交わる点を$\mathrm{R}$とする.

(1)$\mathrm{AS}$の長さを$t$で表せ.
(2)$\mathrm{OR}$の長さを$t$で表せ.
(3)$t$が$\displaystyle 0 \leqq t<\frac{1}{2}$の範囲を動くとき,$\mathrm{PR}$の長さの最小値を求めよ.また,$\mathrm{PR}$の長さを最小にする$t$の値を求めよ.
(図は省略)
日本女子大学 私立 日本女子大学 2013年 第1問
下の図のように,$F_1$を$1$辺の長さが$1$の正三角形とする.$F_1$の$3$つの辺のそれぞれを$3$等分し$3$つの線分に分ける.この$3$つの線分の中央の線分に,その線分を$1$辺とする正三角形を$F_1$の外側に追加して得られる多角形を$F_2$とする.次に,$F_2$の$12$個の辺のそれぞれを$3$等分し$3$つの線分に分ける.この$3$つの線分の中央の線分に,その線分を$1$辺とする正三角形を$F_2$の外側に追加して得られる多角形を$F_3$とする.以下同様にして,$F_4,\ F_5,\ F_6,\ \cdots$を作るものとする.$F_n$の辺の個数を$K_n$,周の長さを$L_n$,面積を$S_n$とする.
(図は省略)

(1)$K_n (n \geqq 1)$を求めよ.
(2)$L_n (n \geqq 1)$を求めよ.
(3)$S_1$と$S_n-S_{n-1} (n \geqq 2)$を求めよ.
(4)$S_n (n \geqq 1)$を求めよ.
(5)数列$\{L_n\}$の極限を調べよ.
(6)数列$\{S_n\}$の極限を調べよ.
神奈川大学 私立 神奈川大学 2013年 第2問
$n$を$3$以上の自然数とする.平面上の点$\mathrm{O}$を中心とする半径$1$の円に内接する正$n$角形の面積を$a_n$,外接する正$n$角形の面積を$b_n$とする.このとき,次の問いに答えよ.

(1)$a_n$を求めよ.
(2)$b_n$を求めよ.

(3)$\displaystyle \frac{b_n}{a_n}<\frac{4}{3}$となる最小の$n$を求めよ.


\mon[補足:] 円に内接する正$n$角形とは,円周を$n$等分して隣り合う点を線分で結んでできる正$n$角形をいう.円に外接する正$n$角形とは,円周を$n$等分した各点において円の接線をひき,隣り合う点における$2$つの接線の交点を頂点とする正$n$角形をいう.
北里大学 私立 北里大学 2013年 第3問
次の$[ ]$にあてはまる答を求めよ.

(1)$\mathrm{AB}=5$,$\mathrm{BC}=6$,$\mathrm{CA}=4$である三角形$\mathrm{ABC}$を考える.$\cos \angle \mathrm{BAC}$の値は$[ ]$であり,三角形$\mathrm{ABC}$の面積は$[ ]$である.また,三角形$\mathrm{ABC}$の外接円の半径は$[ ]$である.さらに,三角形$\mathrm{ABC}$の内接円の中心を$\mathrm{I}$とし,直線$\mathrm{AI}$と辺$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,線分$\mathrm{AI}$の長さを線分$\mathrm{ID}$の長さで割った$\displaystyle \frac{\mathrm{AI}}{\mathrm{ID}}$の値は$[ ]$である.
(2)放物線$y=x^2-4x+3$を$C$とおく.点$(2,\ -5)$から$C$に引いた$2$本の接線の方程式は$y=[ ]$と$y=[ ]$である.これら$2$本の接線と$C$で囲まれた図形の面積は$[ ]$である.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第4問
$a,\ d$は$ad \neq 0$をみたす実数とする.$\mathrm{O}$を原点とする座標平面上において,行列$A=\left( \begin{array}{cc}
a & -1 \\
0 & d
\end{array} \right)$の表す$1$次変換(移動)を$f$とし,以下の$2$つの条件をみたす直線$\ell$がただ$1$つ存在するときを考える.

$(ⅰ)$ $\ell$は$\mathrm{O}$を通る.
$(ⅱ)$ $f$によって,$\ell$上の点はすべて$\ell$と垂直に交わるある直線$m$上に移される.

このとき,次の問いに答えよ.

(1)$a$と$d$の関係式を求めよ.
(2)$d>0$とする.$\ell$上に$\mathrm{O}$からの距離が$1$で$x$座標が正となる点$\mathrm{P}$をとり,$\mathrm{P}$の$f$による像を$\mathrm{Q}$とする.線分$\mathrm{OQ}$の長さを求めよ.また,直線$\mathrm{PQ}$と$y$軸が交わる点を$\mathrm{R}$とするとき,線分$\mathrm{OR}$の長さが最小となるように$a$と$d$の値を定めよ.
北里大学 私立 北里大学 2013年 第1問
次の$[ ]$にあてはまる答を記せ.ただし,$(5)$において,必要ならば$\log_{10}2=0.3010$を用いてよい.

(1)$\mathrm{OA}:\mathrm{OB}=1:3$である三角形$\mathrm{OAB}$において,辺$\mathrm{AB}$の中点を$\mathrm{M}$,線分$\mathrm{OM}$を$1:2$に内分する点を$\mathrm{N}$とし,$\angle \mathrm{AOB}$の大きさを$\theta$とする.

(i) $\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,$\overrightarrow{a}$と$\overrightarrow{b}$を用いて$\overrightarrow{\mathrm{NA}}$を表すと,$\overrightarrow{\mathrm{NA}}=[ ] \overrightarrow{a}-[ ] \overrightarrow{b}$である.
(ii) $\overrightarrow{\mathrm{ON}}$と$\overrightarrow{\mathrm{NA}}$が垂直であるとき,$\cos \theta$の値は$[ ]$である.

(2)$(x+2y+3z)^6$の展開式における$x^4y^2$の係数は$[ ]$であり,$x^3y^2z$の係数は$[ ]$である.
(3)点$(x,\ y)$が不等式$x^2+y^2 \leqq 4$の表す領域を動くとする.このとき,$3x+y$は,$x=[ ]$,$y=[ ]$において最大値$[ ]$をとり,$x=[ ]$,$y=[ ]$において最小値$[ ]$をとる.
(4)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$つの袋があり,$\mathrm{A}$には赤球$2$個と白球$2$個,$\mathrm{B}$には白球$1$個と青球$3$個,さらに,$\mathrm{C}$には赤球$2$個と白球$1$個と青球$1$個が入っている.いま,$\mathrm{A}$から$1$個の球を取り出し,$\mathrm{B}$から$1$個の球を取り出し,$\mathrm{C}$から$1$個の球を取り出す.

(i) 取り出した$3$個の球の色が$1$種類となる確率は$[ ]$である.
(ii) 取り出した$3$個の球の色が$2$種類となる確率は$[ ]$である.
(iii) 取り出した$3$個の球の色が$3$種類となる確率は$[ ]$である.

(5)条件$a_1=5$,$a_{n+1}=2a_n-3$によって定まる数列$\{a_n\}$の一般項は$a_n=[ ]$で与えられる.この数列の初項から第$n$項までの和を$S_n$とおくとき,$S_8$の値は$[ ]$であり,不等式$\displaystyle \frac{S_n}{3}>n+16666$を満たす正の整数$n$のうちで最小のものは$[ ]$である.
東京都市大学 私立 東京都市大学 2013年 第1問
次の問に答えよ.

(1)$a \neq 1$とする.
\[ \left( \begin{array}{cc}
a & 1-a \\
1-b & b
\end{array} \right) \left( \begin{array}{c}
p \\
1-p
\end{array} \right)=\left( \begin{array}{c}
p \\
1-p
\end{array} \right) \]
を満たす数$p$を求めよ.

(2)等式$\displaystyle \lim_{x \to \frac{\pi}{6}} \frac{\sin \left( 2x-\displaystyle \frac{\pi}{3} \right)}{ax-b}=1$が成り立つとき,定数$a,\ b$の値を求めよ.

(3)平面上の点$\mathrm{P}(1,\ 1)$,$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$に対し,線分$\mathrm{AB}$を$2:3$に内分する点を$\mathrm{Q}$とする.直線$\mathrm{PQ}$の方程式を求めよ.
東京都市大学 私立 東京都市大学 2013年 第1問
次の問に答えよ.

(1)$\displaystyle \cos \theta+\sin \theta=\frac{1}{2}$のとき,$\cos^3 \theta \sin^2 \theta+\cos^2 \theta \sin^3 \theta$を求めよ.
(2)等式$(a+i)(a+1-i)=4+bi$を満たす実数$a,\ b$を求めよ.ただし,$i$は虚数単位である.
(3)$xy$平面上の$2$点$(1,\ 2)$,$(3,\ 1)$を通る直線を$\ell$とする.直線$\ell$上を動く点$\mathrm{P}$が原点$\mathrm{O}$に最も近づくとき,線分$\mathrm{OP}$の長さを求めよ.
千葉工業大学 私立 千葉工業大学 2013年 第3問
次の各問に答えよ.

(1)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が$\displaystyle a_1=\frac{1}{2}$,$\displaystyle a_{n+1}=\frac{3a_n}{2n \cdot a_n+3} (n=1,\ 2,\ 3,\ \cdots)$で定められている.$\displaystyle b_n=\frac{1}{a_n} (n=1,\ 2,\ 3,\ \cdots)$とおくと,$b_1=[ア]$,$\displaystyle b_{n+1}-b_n=\frac{[イ]}{[ウ]}n$が成り立つ.$\displaystyle a_{10}=\frac{[エ]}{[オカ]}$であり,$\displaystyle a_n<\frac{1}{50}$をみたす最小の$n$は$[キク]$である.
(2)平行四辺形$\mathrm{OABC}$において,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{D}$とし,線分$\mathrm{CD}$を$3:4$に内分する点を$\mathrm{E}$とするとき,
\[ \overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OC}},\quad \overrightarrow{\mathrm{OE}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OC}} \]
である.直線$\mathrm{OE}$と辺$\mathrm{BC}$との交点を$\mathrm{F}$とするとき,
\[ \overrightarrow{\mathrm{OF}}=\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OC}} \]
であり,三角形$\mathrm{CEF}$の面積は平行四辺形$\mathrm{OABC}$の面積の$\displaystyle \frac{[チ]}{[ツテ]}$倍である.
千葉工業大学 私立 千葉工業大学 2013年 第4問
$\mathrm{O}$を原点とする$xy$平面上に,放物線$\displaystyle C:y=\frac{1}{4}x^2$がある.点$\mathrm{A}(2,\ 8)$を通る直線$\ell:y=t(x-2)+8$(ただし,$t$は定数)と$C$との$2$つの交点を結ぶ線分の中点を$\mathrm{M}(X,\ Y)$とするとき,次の問いに答えよ.

(1)$C$と$\ell$との$2$つの交点の$x$座標を$\alpha,\ \beta$とすると,$\alpha+\beta=[ア] t$である.$X,\ Y$を$t$を用いて表すと,$X=[イ] t$,$Y=[ウ] t^2-[エ] t+[オ]$である.
(2)$\mathrm{M}$が直線$\mathrm{OA}$上の点であるような$t$の値は小さい方から順に$[カ]$,$[キ]$である.
(3)$t$が$[カ]$から$[キ]$まで変化するときの$\mathrm{M}$の軌跡は,放物線
\[ D:y=\frac{[ク]}{[ケ]}x^2-x+[コ] \]
の$[サ] \leqq x \leqq [シ]$の部分である.
(4)$[カ] \leqq t \leqq [キ]$において,直線$\mathrm{OM}$が$D$に接するとき,$X=[ス]$である.また,$t$が$[カ]$から$[キ]$まで変化するとき,線分$\mathrm{OM}$が通過する部分の面積は$\displaystyle \frac{[セソ]}{[タ]}$である.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。