タグ「線分」の検索結果

56ページ目:全1074問中551問~560問を表示)
琉球大学 国立 琉球大学 2013年 第2問
$\triangle \mathrm{ABC}$の$3$辺の長さが$\mathrm{AB}=6$,$\mathrm{BC}=5$,$\mathrm{CA}=4$であるとき,次の問いに答えよ.

(1)$\cos \angle \mathrm{BAC}$を求めよ.
(2)$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{L}$とする.線分$\mathrm{AL}$の長さを求めよ.
三重大学 国立 三重大学 2013年 第2問
$\theta$を$\displaystyle 0<\theta<\frac{\pi}{6}$となる実数とし,平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}(\cos \theta,\ \sin \theta)$,$\mathrm{Q}(\cos 3\theta,\ -\sin 3\theta)$をとる.さらに線分$\mathrm{PQ}$と$x$軸との交点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)加法定理を用いて$\cos 3\theta$を$\cos \theta$だけで表す式を導け.同様に$\sin 3\theta$を$\sin \theta$だけで表す式を導け.
(2)$\mathrm{PR}:\mathrm{RQ}=5:11$のとき,$\sin \theta,\ \cos \theta$の値を求めよ.
(3)$(2)$の条件下で$\triangle \mathrm{POR}$の面積を求めよ.
三重大学 国立 三重大学 2013年 第2問
$\theta$を$\displaystyle 0<\theta<\frac{\pi}{6}$となる実数とし,平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}(\cos \theta,\ \sin \theta)$,$\mathrm{Q}(\cos 3\theta,\ -\sin 3\theta)$をとる.さらに線分$\mathrm{PQ}$と$x$軸との交点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)加法定理を用いて$\cos 3\theta$を$\cos \theta$だけで表す式を導け.同様に$\sin 3\theta$を$\sin \theta$だけで表す式を導け.
(2)$\mathrm{PR}:\mathrm{RQ}=5:11$のとき,$\sin \theta,\ \cos \theta$の値を求めよ.
(3)(2)の条件下で$\triangle \mathrm{POR}$の面積を求めよ.
宇都宮大学 国立 宇都宮大学 2013年 第6問
座標平面上で原点$\mathrm{O}$を中心とする半径$1$の円の第$1$象限の部分を$C$とする.曲線$y=f(x) \ (0<x<1)$は第$4$象限にあり,かつすべての$x_1 \ (0<x_1<1)$について,点$(x_1,\ f(x_1))$における接線が$C$上の点$(x_1,\ y_1)$における$C$の接線と直交しているとする.曲線$y=f(x)$上の動点を$\mathrm{P}$とするとき,次の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)点$\mathrm{P}$における$y=f(x)$の接線と$y$軸との交点を$\mathrm{Q}$とするとき,線分$\mathrm{PQ}$の長さは常に$1$であることを示せ.
(3)$x$軸上と$y$軸上に$2$辺をもち,線分$\mathrm{OP}$を対角線とする長方形の面積を$S$とする.点$\mathrm{P}$が$S$を最大にする位置にあるとき,$\mathrm{P}$は$\mathrm{P}$における曲線の接線と座標軸が交わってできる$2$点の中点であることを示せ.
(4)$f(x)$を求めよ.ただし,$\displaystyle \lim_{x \to 1-0}f(x)=0$であるとする.
大阪教育大学 国立 大阪教育大学 2013年 第3問
平行四辺形$\mathrm{ABCD}$を底面とする四角錐$\mathrm{OABCD}$を考える.線分$\mathrm{OB}$の中点を$\mathrm{B}^\prime$,線分$\mathrm{OC}$を$1:2$に内分する点を$\mathrm{C}^\prime$とし,$\mathrm{A}$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$を通る平面と直線$\mathrm{OD}$の交点を$\mathrm{D}^\prime$とする.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とする.

(1)$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$で表せ.
(2)$\overrightarrow{\mathrm{OD^\prime}}$は$\overrightarrow{\mathrm{OD}}$の何倍か.
(3)三角錐$\mathrm{AOB}^\prime \mathrm{D}^\prime$の体積は,三角錐$\mathrm{AOBD}$の体積の何倍か.
(4)四角錐$\mathrm{OAB}^\prime \mathrm{C}^\prime \mathrm{D}^\prime$の体積は,四角錐$\mathrm{OABCD}$の体積の何倍か.
山形大学 国立 山形大学 2013年 第1問
面積が$1$である$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$上に点$\mathrm{D}$があり,辺$\mathrm{CA}$上に点$\mathrm{E}$があり,辺$\mathrm{AB}$上に点$\mathrm{F}$がある.正の実数$x,\ y,\ z,\ w$を$\mathrm{AF}:\mathrm{FB}=x:y$,$\mathrm{BD}:\mathrm{DC}=y:z$,$\mathrm{CE}:\mathrm{EA}=z:w$となるように定める.線分$\mathrm{AD}$,$\mathrm{BE}$,$\mathrm{CF}$が$\triangle \mathrm{ABC}$の内部の点$\mathrm{G}$で交わるとき,次の問に答えよ.

(1)三角形の面積の比を用いて,$\displaystyle \frac{x}{y} \cdot \frac{y}{z} \cdot \frac{z}{w}=1$となることを示せ.
(2)$\triangle \mathrm{AFE}$の面積を$x,\ y,\ z$を用いて表せ.
(3)$\displaystyle \alpha=\frac{x}{y},\ \beta=\frac{y}{z}$とする.このとき,$\triangle \mathrm{DEF}$の面積を$\alpha,\ \beta$を用いて表せ.
(4)$\triangle \mathrm{DEF}$の面積が最大となるのは,点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が各辺の中点となるときであることを示せ.
三重大学 国立 三重大学 2013年 第2問
$\theta$を$\displaystyle 0<\theta<\frac{\pi}{6}$となる実数とし,平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}(\cos \theta,\ \sin \theta)$,$\mathrm{Q}(\cos 3\theta,\ -\sin 3\theta)$をとる.さらに線分$\mathrm{PQ}$と$x$軸との交点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)加法定理を用いて$\cos 3\theta$を$\cos \theta$だけで表す式を導け.同様に$\sin 3\theta$を$\sin \theta$だけで表す式を導け.
(2)$\mathrm{PR}:\mathrm{RQ}=5:11$のとき,$\sin \theta,\ \cos \theta$の値を求めよ.
(3)(2)の条件下で$\triangle \mathrm{POR}$の面積を求めよ.
鹿児島大学 国立 鹿児島大学 2013年 第1問
次の各問いに答えよ.

(1)四角形$\mathrm{ABCD}$において,線分$\mathrm{AC}$と線分$\mathrm{BD}$の交点を$\mathrm{P}$とし,$\angle \mathrm{DAC}=\angle \mathrm{CBD}$,$\mathrm{AC}=8$,$\mathrm{AP}=2$,$\mathrm{PD}=4$とする.このとき$\mathrm{BD}$の長さを求めよ.
(2)平面上で$2$つの円を考える.共通接線がちょうど$3$本引けるような$2$つの円の位置関係の例を図示せよ.また,$3$本の共通接線も描け.
(3)$3$個のさいころを同時に投げるとき,$3$個の目の積が$3$の倍数である確率を求めよ.
(4)$a,\ b$を実数とする.命題「$ab=0$ならば,$a=0$かつ$b=0$」の逆と対偶を書き,それぞれの真偽を答えよ.
群馬大学 国立 群馬大学 2013年 第5問
座標平面において,原点$\mathrm{O}$を中心とする半径$1$の円周$C$上に定点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$をとる.$C$の上半円周($y$座標が正の部分)上を動く点を$\mathrm{P}$,下半円周($y$座標が負の部分)上を動く点を$\mathrm{Q}$とする.$\displaystyle \angle \mathrm{PAB}=\alpha \ \left( 0<\alpha<\frac{\pi}{2} \right)$,$\displaystyle \angle \mathrm{QAB}=\beta \ \left( 0<\beta<\frac{\pi}{2} \right)$とし,直線$\mathrm{PQ}$と$x$軸との交点を$\mathrm{R}(t,\ 0)$とする.

(1)$t$を$\alpha,\ \beta$を用いて表せ.
(2)$\displaystyle \alpha+\beta=\frac{\pi}{4}$のとき,$t$のとり得る値の範囲を求めよ.
(3)線分$\mathrm{PR}$の長さと線分$\mathrm{RQ}$の長さの比が$2:1$のとき,$t$を$\alpha$を用いて表せ.
群馬大学 国立 群馬大学 2013年 第13問
空間内に$4$点$\mathrm{A}(2,\ 0,\ 2)$,$\mathrm{B}(6,\ 0,\ 0)$,$\mathrm{C}(4,\ 2,\ 2)$,$\mathrm{D}(5,\ 1,\ 7)$がある.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を含む平面を$\alpha$とし,点$\mathrm{D}$から$\alpha$に下ろした垂線と$\alpha$の交点を$\mathrm{H}$とする.点$\mathrm{E}$を,$\mathrm{H}$が線分$\mathrm{DE}$の中点となるようにとるとき,$\mathrm{E}$の座標を求めよ.
(2)$0<t<1$とする.線分$\mathrm{AB}$を$t:1-t$に内分する点を$\mathrm{P}$,線分$\mathrm{BC}$を$t^2:1-t^2$に内分する点を$\mathrm{Q}$,線分$\mathrm{CD}$の中点を$\mathrm{R}$とするとき,四面体$\mathrm{BPQR}$の体積の最大値を求めよ.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。