タグ「線分」の検索結果

55ページ目:全1074問中541問~550問を表示)
宮城教育大学 国立 宮城教育大学 2013年 第3問
空間内に$1$辺の長さが$1$の正四面体$\mathrm{ABCD}$と点$\mathrm{O}$があり,
\[ |\overrightarrow{\mathrm{AO}}|=|\overrightarrow{\mathrm{BO}}|=|\overrightarrow{\mathrm{CO}}|=|\overrightarrow{\mathrm{DO}}| \]
を満たしている.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$とおくとき,次の問いに答えよ.

(1)空間内の点$\mathrm{P}$について,$l,\ m,\ n$を実数とし,
\[ \overrightarrow{\mathrm{AP}}=l \overrightarrow{b}+m \overrightarrow{c}+n \overrightarrow{d} \]
とする.このとき,$|\overrightarrow{\mathrm{AP}}|^2$,$|\overrightarrow{\mathrm{BP}}|^2$をそれぞれ$l,\ m,\ n$を用いて表せ.また,$|\overrightarrow{\mathrm{AP}}|^2=|\overrightarrow{\mathrm{BP}}|^2$であるための必要十分条件を$l,\ m,\ n$を用いて表せ.
(2)$\displaystyle \overrightarrow{\mathrm{AO}}=\frac{1}{4}(\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d})$であることを示せ.
(3)線分$\mathrm{BC}$を$1:4$に内分する点を$\mathrm{E}$とする.$3$点$\mathrm{A}$,$\mathrm{C}$,$\mathrm{D}$を通る平面と直線$\mathrm{EO}$との交点を$\mathrm{F}$とするとき,$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{c}$,$\overrightarrow{d}$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2013年 第3問
空間内に$1$辺の長さが$1$の正四面体$\mathrm{ABCD}$と点$\mathrm{O}$があり,
\[ |\overrightarrow{\mathrm{AO}}|=|\overrightarrow{\mathrm{BO}}|=|\overrightarrow{\mathrm{CO}}|=|\overrightarrow{\mathrm{DO}}| \]
を満たしている.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$とおくとき,次の問いに答えよ.

(1)空間内の点$\mathrm{P}$について,$l,\ m,\ n$を実数とし,
\[ \overrightarrow{\mathrm{AP}}=l \overrightarrow{b}+m \overrightarrow{c}+n \overrightarrow{d} \]
とする.このとき,$|\overrightarrow{\mathrm{AP}}|^2$,$|\overrightarrow{\mathrm{BP}}|^2$をそれぞれ$l,\ m,\ n$を用いて表せ.また,$|\overrightarrow{\mathrm{AP}}|^2=|\overrightarrow{\mathrm{BP}}|^2$であるための必要十分条件を$l,\ m,\ n$を用いて表せ.
(2)$\displaystyle \overrightarrow{\mathrm{AO}}=\frac{1}{4}(\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d})$であることを示せ.
(3)線分$\mathrm{BC}$を$1:4$に内分する点を$\mathrm{E}$とする.$3$点$\mathrm{A}$,$\mathrm{C}$,$\mathrm{D}$を通る平面と直線$\mathrm{EO}$との交点を$\mathrm{F}$とするとき,$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{c}$,$\overrightarrow{d}$を用いて表せ.
秋田大学 国立 秋田大学 2013年 第3問
空間内の点$\mathrm{P}(1,\ -1,\ -2)$を出発して,$3$点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$で向きを変えてもとの点$\mathrm{P}$に戻る折れ線$\mathrm{PQRSP}$を,$\overrightarrow{\mathrm{PQ}}=(-2,\ 4,\ 5)$,$\overrightarrow{\mathrm{QR}}=(2,\ 1,\ 1)$,$\overrightarrow{\mathrm{RS}}=(-3,\ -4,\ -2)$となるように定める.このとき,次の問いに答えよ.

(1)点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$の座標をそれぞれ求めよ.
(2)平面上の点$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$,$\mathrm{R}^\prime$,$\mathrm{S}^\prime$を,それぞれ点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$の$x,\ y$座標を取り出して得られる点とする.例えば,点$\mathrm{P}^\prime$の座標は$(1,\ -1)$となる.このとき,平面上の線分$\mathrm{P}^\prime \mathrm{Q}^\prime$と線分$\mathrm{R}^\prime \mathrm{S}^\prime$の交点$\mathrm{M}^\prime$を求めよ.
(3)線分$\mathrm{PQ}$上の点$\mathrm{M}_1$と線分$\mathrm{RS}$上の点$\mathrm{M}_2$を,$\mathrm{M}_1$の$x,\ y$座標が$\mathrm{M}_2$の$x,\ y$座標とそれぞれ等しくなる点とする.$2$点$\mathrm{M}_1$,$\mathrm{M}_2$間の距離を求めよ.
(4)空間内の点$\mathrm{X}$が,点$\mathrm{Q}$を出発して点$\mathrm{P}$まで,$\mathrm{Q} \to \mathrm{R} \to \mathrm{S} \to \mathrm{P}$の順に折れ線上を動く.点$\mathrm{X}$から直線$\mathrm{PQ}$上に垂線を引き,その交点を$\mathrm{H}$とする.点$\mathrm{H}$が$\overrightarrow{\mathrm{PQ}}$と同じ向きに動いた距離の総和と,逆の向きに動いた距離の総和を,それぞれ求めよ.
佐賀大学 国立 佐賀大学 2013年 第5問
一辺の長さが$2$の正三角形$\mathrm{OAB}$において,線分$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:1$に内分する点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問に答えよ.

(1)$\overrightarrow{a},\ \overrightarrow{b}$の内積$\overrightarrow{a} \cdot \overrightarrow{b}$の値を求めよ.
(2)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)線分$\mathrm{PQ}$の長さを求めよ.
(4)線分$\mathrm{OB}$の中点を$\mathrm{C}$とし,線分$\mathrm{AC}$と線分$\mathrm{PQ}$の交点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
筑波大学 国立 筑波大学 2013年 第3問
$xyz$空間において,点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$を通る平面上にあり,正三角形$\mathrm{ABC}$に内接する円板を$D$とする.円板$D$の中心を$\mathrm{P}$,円板$D$と辺$\mathrm{AB}$の接点を$\mathrm{Q}$とする.

(1)点$\mathrm{P}$と点$\mathrm{Q}$の座標を求めよ.
(2)円板$D$が平面$z=t$と共有点をもつ$t$の範囲を求めよ.
(3)円板$D$と平面$z=t$の共通部分が線分であるとき,その線分の長さを$t$を用いて表せ.
(4)円板$D$を$z$軸のまわりに回転してできる立体の体積を求めよ.
(図は省略)
茨城大学 国立 茨城大学 2013年 第3問
平面上に$\triangle \mathrm{OAB}$があり,その面積は$S$である.辺$\mathrm{AB}$を$t:1-t \ (0<t<1)$に内分する点を$\mathrm{M}$,線分$\mathrm{OM}$を$3:1$に内分する点を$\mathrm{P}$,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線と辺$\mathrm{OB}$との交点を$\mathrm{Q}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.次の各問に答えよ.

(1)$\overrightarrow{\mathrm{AM}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\triangle \mathrm{OAQ}$の面積が$\displaystyle \frac{1}{10}S$のとき$t$の値を求めよ.
茨城大学 国立 茨城大学 2013年 第3問
平面上に$\triangle \mathrm{OAB}$があり,その面積は$S$である.辺$\mathrm{AB}$を$t:1-t \ (0<t<1)$に内分する点を$\mathrm{M}$,線分$\mathrm{OM}$を$3:1$に内分する点を$\mathrm{P}$,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線と辺$\mathrm{OB}$との交点を$\mathrm{Q}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.以下の各問に答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\triangle \mathrm{OAQ}$の面積が$\displaystyle \frac{1}{10}S$のとき,$t$の値を求めよ.
東京学芸大学 国立 東京学芸大学 2013年 第2問
座標平面上に,点$\mathrm{A}(0,\ -2)$と円$C:x^2+(y-2)^2=4$がある.円$C$上の点$\mathrm{P}$に対し,線分$\mathrm{AP}$の中点を$\mathrm{M}$,$\mathrm{M}$を通り$\mathrm{AP}$に垂直な直線を$\ell$とする.下の問いに答えよ.

(1)点$\mathrm{P}$が円$C$上を動くとき,点$\mathrm{M}$の軌跡を求めよ.
(2)直線$\ell$が円$C$に接するとき,点$\mathrm{M}$の座標を求めよ.
(3)点$\mathrm{P}$が円$C$上を動くとき,直線$\ell$が通る点全体の領域を求め,図示せよ.
電気通信大学 国立 電気通信大学 2013年 第4問
座標平面上の$2$つの直線$\ell,\ m$を,それぞれ
\[ \ell:y=\frac{1}{\sqrt{3}}x,\quad m:y=-\frac{1}{\sqrt{3}}x \]
とし,$\ell$上に点$\mathrm{A}(\sqrt{3}s,\ s)$を,$m$上に点$\mathrm{B}(\sqrt{3}t,\ -t)$をとる. \\
ただし,$s>0$,$t>0$とする.さらに,正三角形$\mathrm{ABC}$を,頂点$\mathrm{C}$が直線$\mathrm{AB}$に関して原点$\mathrm{O}$と同じ側になるように定める.このとき,以下の問いに答えよ.
\img{178_2358_2013_1}{50}


(1)点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が同一円周上にあることを示し,点$\mathrm{C}$が$y$軸上にあることを証明せよ.
(2)点$\mathrm{C}$の$y$座標を$s,\ t$の式で表せ.
(3)点$\mathrm{D}(X,\ Y)$を,直線$\mathrm{AB}$に関して点$\mathrm{C}$と対称な点とする.このとき,$X$と$Y$をそれぞれ$s,\ t$の式で表せ.
(4)線分$\mathrm{AB}$の長さを$s,\ t$の式で表せ.
(5)点$\mathrm{A}$,$\mathrm{B}$が線分$\mathrm{AB}$の長さを$\sqrt{3}$に保ちながら動くとき,点$\mathrm{D}$の軌跡を求め,その概形を図示せよ.
九州工業大学 国立 九州工業大学 2013年 第4問
曲線$\displaystyle C_1:\frac{x^2}{4}+y^2=1 \ (x \geqq 0)$と曲線$C_2:x^2+y^2=1 \ (x \geqq 0)$がある.曲線$C_1$の点$\mathrm{P}(\sqrt{s},\ \sqrt{t}) \ (s>0,\ t>0)$における法線を$\ell$とする.次に答えよ.

(1)$s$を$t$を用いて表せ.また,直線$\ell$の方程式を$t$を用いて表せ.
(2)直線$\ell$が曲線$C_2$に接するときの点$\mathrm{P}$の座標および接点$\mathrm{Q}$の座標を求めよ.
(3)$\mathrm{P}$,$\mathrm{Q}$は(2)で求めた点とし,点$(0,\ 1)$を$\mathrm{R}$とする.曲線$C_1$,弧$\mathrm{RQ}$および線分$\mathrm{PQ}$で囲まれた図形を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。