タグ「線分」の検索結果

51ページ目:全1074問中501問~510問を表示)
秋田県立大学 公立 秋田県立大学 2014年 第4問
平面上に三つの異なる定点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.線分$\mathrm{AB}$の中点を$\mathrm{M}$とする.また,同じ平面上に動点$\mathrm{P}$があり,$\displaystyle \angle \mathrm{APB}=\frac{\pi}{2}$を満たす.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OM}}=\overrightarrow{m}$とする.以下の設問に答えよ.$(1)$は解答のみでよく,$(2)$,$(3)$は解答とともに導出過程も記述せよ.

(1)$\overrightarrow{m}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$|\overrightarrow{\mathrm{MP}}|$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=\sqrt{14}$,$\overrightarrow{a} \cdot \overrightarrow{b}=-6$が成り立つ.また,$\overrightarrow{a}$と$\overrightarrow{m}$のなす角を$\alpha$,$\overrightarrow{a}$と$\overrightarrow{\mathrm{MP}}$のなす角を$\beta$とする.ただし,$0 \leqq \alpha \leqq \pi$,$0 \leqq \beta \leqq \pi$とする.以下の設問$(ⅰ)$,$(ⅱ)$,$(ⅲ)$に答えよ.

(i) $\cos \alpha$の値を求めよ.
(ii) $\triangle \mathrm{OPA}$の面積が最大となるときの$\beta$の値を求めよ.
(iii) $\triangle \mathrm{OPA}$の面積の最大値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第1問
$xy$平面上に動点$\mathrm{P}(t,\ 2t)$,$\mathrm{Q}(t-1,\ 1-t)$がある.ただし,$0 \leqq t \leqq 1$とする.次の問いに答えよ.

(1)実数$k$に対して直線$x=k$と直線$\mathrm{PQ}$との交点を求めよ.
(2)閉区間$[-1,\ 1]$内の定数$a$に対し,直線$x=a$と線分$\mathrm{PQ}$との交点の$y$座標のとり得る範囲を$a$で表せ.
(3)$t$が$0$から$1$まで動くとき,線分$\mathrm{PQ}$が動く領域$S$の面積を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第1問
次の問いに答えよ.

(1)四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$1:1$に内分する点を$\mathrm{D}$,線分$\mathrm{BD}$を$3:2$に内分する点を$\mathrm{E}$,線分$\mathrm{CE}$を$3:1$に内分する点を$\mathrm{F}$,直線$\mathrm{OF}$と平面$\mathrm{ABC}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$で表せ.
(2)$\sqrt{x^2+84}$が整数となるような正の整数$x$をすべて求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第1問
$xy$平面上に動点$\mathrm{P}(t,\ 2t)$,$\mathrm{Q}(t-1,\ 1-t)$がある.ただし,$0 \leqq t \leqq 1$とする.次の問いに答えよ.

(1)実数$k$に対して直線$x=k$と直線$\mathrm{PQ}$との交点を求めよ.
(2)閉区間$[-1,\ 1]$内の定数$a$に対し,直線$x=a$と線分$\mathrm{PQ}$との交点の$y$座標のとり得る範囲を$a$で表せ.
(3)$t$が$0$から$1$まで動くとき,線分$\mathrm{PQ}$が動く領域$S$の面積を求めよ.
(4)$S$を$x$軸の周りに$1$回転させた回転体の体積を求めよ.
高崎経済大学 公立 高崎経済大学 2014年 第5問
$1$辺の長さが$10$の正三角形$\mathrm{ABC}$がある.辺$\mathrm{AB}$上に$\mathrm{AD}=5$となるように点$\mathrm{D}$をとり,辺$\mathrm{AC}$上に$\mathrm{AE}=8$となるように点$\mathrm{E}$をとる.また,$\mathrm{BE}$と$\mathrm{CD}$の交点を$\mathrm{F}$とし,直線$\mathrm{AF}$と$\mathrm{BC}$の交点を$\mathrm{G}$とする.以下の各問に答えよ.

(1)線分$\mathrm{BG}$の長さを求めよ.
(2)線分$\mathrm{GF}$の長さを求めよ.
(3)$\mathrm{A}$から辺$\mathrm{BC}$に垂線$\mathrm{AH}$を下ろす.$\mathrm{AH}$と$\mathrm{CD}$の交点を$\mathrm{I}$とするとき,線分$\mathrm{IH}$の長さを求めよ.
(4)三角形$\mathrm{IFH}$の面積を求めよ.
県立広島大学 公立 県立広島大学 2014年 第2問
一辺の長さが$2$の正三角形$\mathrm{ABC}$と,その外接円$O$がある.弧$\mathrm{AB}$上の点$\mathrm{P}$は,$\angle \mathrm{BCP}=\theta$が$\displaystyle 0<\theta<\frac{\pi}{3}$を満たすように動く.次の問いに答えよ.

(1)線分$\mathrm{PB}$の長さを$\theta$を用いて表せ.
(2)$\mathrm{PA}+\mathrm{PB}+\mathrm{PC}$の最大値を求めよ.
(3)$\mathrm{PA}^2+\mathrm{PB}^2+\mathrm{PC}^2$は一定であることを示せ.
(4)$\mathrm{PA} \cdot \mathrm{PB} \cdot \mathrm{PC}$の最大値を求めよ.
北九州市立大学 公立 北九州市立大学 2014年 第4問
$\mathrm{O}$を原点とする座標空間内に$3$点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(-2,\ 2,\ 0)$,$\mathrm{C}(2,\ -2,\ 4)$がある.以下の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$の大きさ$|\overrightarrow{\mathrm{AB}}|$,$|\overrightarrow{\mathrm{AC}}|$を求めよ.また,$\angle \mathrm{BAC}=\theta$とするとき$\cos \theta$の値を求めよ.
(2)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とし,$\mathrm{O}$から平面$\alpha$に引いた垂線と平面$\alpha$との交点を$\mathrm{H}$とする.また,$\overrightarrow{\mathrm{OH}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}+u \overrightarrow{\mathrm{OC}}$,$s+t+u=1$とする.このときの$\mathrm{H}$の座標を$s,\ t,\ u$を用いて表せ.
(3)$\mathrm{H}$の座標と線分$\mathrm{OH}$の長さを求めよ.
(4)四面体$\mathrm{OABC}$の体積を求めよ.
京都府立大学 公立 京都府立大学 2014年 第1問
$0<t<1$とする.$\triangle \mathrm{OAB}$において,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とする.$\displaystyle \overrightarrow{\mathrm{AC}}=\frac{2}{3} \overrightarrow{\mathrm{AB}}$となる点を$\mathrm{C}$とし,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とする.$\overrightarrow{\mathrm{OD}}=t \overrightarrow{b}$となる点を$\mathrm{D}$,$\overrightarrow{\mathrm{OE}}=(1-t) \overrightarrow{a}$となる点を$\mathrm{E}$,$\overrightarrow{\mathrm{AF}}=(1-t) \overrightarrow{\mathrm{AB}}$となる点を$\mathrm{F}$とする.線分$\mathrm{AD}$と線分$\mathrm{OC}$の交点を$\mathrm{G}$とする.以下の問いに答えよ.

(1)$3|\overrightarrow{a}|^2+6|\overrightarrow{b}|^2-9|\overrightarrow{c}|^2=2|\overrightarrow{\mathrm{AB}}|^2$となることを示せ.
(2)$\overrightarrow{\mathrm{AG}}$を$\overrightarrow{a}$,$\overrightarrow{b}$および$t$を用いて表せ.
(3)$\triangle \mathrm{OAB}$の面積を$S_1$,$\triangle \mathrm{DEF}$の面積を$S_2$とする.$\displaystyle \frac{S_2}{S_1}$を$t$を用いて多項式で表し,$\displaystyle \frac{S_2}{S_1}$の最小値とそのときの$t$の値を求めよ.
京都大学 国立 京都大学 2013年 第1問
平行四辺形$\mathrm{ABCD}$において,辺$\mathrm{AB}$を$1:1$に内分する点を$\mathrm{E}$,辺$\mathrm{BC}$を$2:1$に内分する点を$\mathrm{F}$,辺$\mathrm{CD}$を$3:1$に内分する点を$\mathrm{G}$とする.線分$\mathrm{CE}$と線分$\mathrm{FG}$の交点を$\mathrm{P}$とし,線分$\mathrm{AP}$を延長した直線と辺$\mathrm{BC}$の交点を$\mathrm{Q}$とするとき,比$\mathrm{AP}:\mathrm{PQ}$を求めよ.
京都大学 国立 京都大学 2013年 第2問
平行四辺形$\mathrm{ABCD}$において,辺$\mathrm{AB}$を$1:1$に内分する点を$\mathrm{E}$,辺$\mathrm{BC}$を$2:1$に内分する点を$\mathrm{F}$,辺$\mathrm{CD}$を$3:1$に内分する点を$\mathrm{G}$とする.線分$\mathrm{CE}$と線分$\mathrm{FG}$の交点を$\mathrm{P}$とし,線分$\mathrm{AP}$を延長した直線と辺$\mathrm{BC}$の交点を$\mathrm{Q}$とするとき,比$\mathrm{AP}:\mathrm{PQ}$を求めよ.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。