タグ「線分」の検索結果

39ページ目:全1074問中381問~390問を表示)
大阪教育大学 国立 大阪教育大学 2014年 第3問
曲線$\displaystyle y=\frac{x^2}{x^2+3}$を$C$とし,座標平面上の原点を$\mathrm{O}$とする.以下の問に答えよ.

(1)曲線$C$の凹凸,変曲点,漸近線を調べ,その概形をかけ.
(2)曲線$C$の接線で原点を通るものをすべて求めよ.また,その接点を求めよ.
(3)$\mathrm{P}$を原点を中心とする半径$\displaystyle \frac{\sqrt{17}}{4}$の円周上の点とする.点$\mathrm{P}$を点$\displaystyle \mathrm{A} \left( 0,\ \frac{\sqrt{17}}{4} \right)$から時計回りに動かすとき,原点以外に線分$\mathrm{OP}$が初めて曲線$C$と共有点をもつとき,その座標を求めよ.
(4)$\mathrm{Q}$を原点を中心とする半径$2$の円周上の点とする.点$\mathrm{Q}$を点$\mathrm{B}(0,\ 2)$から時計回りに動かすとき,原点以外に線分$\mathrm{OQ}$が初めて曲線$C$と共有点をもつとき,その座標を求めよ.
愛知教育大学 国立 愛知教育大学 2014年 第2問
平面上の四角形$\mathrm{ABCD}$において,$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が次の$(ⅰ)$,$(ⅱ)$,$(ⅲ)$の条件をみたしているとする.

$(ⅰ)$ $\mathrm{AB}=1$,$\mathrm{BC}=5$,$\mathrm{CD}=6$,$\mathrm{DA}=10$
$(ⅱ)$ $3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{D}$は同じ直線上にはない.
$(ⅲ)$ $3$点$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$は同じ直線上にはない.

また,$\angle \mathrm{DAB}=\alpha$,$\angle \mathrm{BCD}=\beta$とし,線分$\mathrm{BD}$の長さを$d$とする.このとき,以下の問いに答えよ.

(1)$d^2$を$\alpha$を用いて表せ.
(2)$d^2$を$\beta$を用いて表せ.
(3)$\alpha,\ \beta$がみたす関係式を求めよ.
(4)四角形$\mathrm{ABCD}$が円に内接するとき,$\alpha,\ \beta$と円の半径$R$を求めよ.
岐阜大学 国立 岐阜大学 2014年 第1問
$t$は実数で$0<t<2$とする.図のように,$1$辺の長さが$2$の正四面体$\mathrm{ABCD}$の辺$\mathrm{AC}$上に点$\mathrm{P}$があり,辺$\mathrm{AD}$上に点$\mathrm{Q}$がある.$\mathrm{CP}=\mathrm{AQ}=t$のとき,以下の問に答えよ.
(図は省略)

(1)線分$\mathrm{BP}$,$\mathrm{PQ}$,$\mathrm{QB}$の長さを,それぞれ$t$を用いて表せ.
(2)$t$が$0<t<2$の範囲を変化するとき,三角形$\mathrm{BPQ}$の$3$辺の長さの和の最小値を求めよ.
(3)三角錐$\mathrm{ABPQ}$の体積を$t$を用いて表せ.
(4)$t$が$0<t<2$の範囲を変化するとき,三角錐$\mathrm{ABPQ}$の体積の最大値を求めよ.
山梨大学 国立 山梨大学 2014年 第4問
楕円$\displaystyle E:\frac{x^2}{3^2}+\frac{y^2}{2^2}=1$および直線$\ell:y=kx (k>0)$とそれらの交点$\mathrm{A}$,$\mathrm{B}$について,次の問いに答えよ.

(1)線分$\mathrm{AB}$の長さを$k$を用いた式で表せ.
(2)楕円$E$上の点$\mathrm{P}$での接線が直線$\ell$に平行なとき,点$\mathrm{P}$の座標を$k$を用いた式で表せ.
(3)楕円$E$上の点$\mathrm{C}$を三角形$\mathrm{ABC}$の面積が最大となる点とするとき,三角形$\mathrm{ABC}$の面積を求めよ.
大分大学 国立 大分大学 2014年 第1問
$k>0$とし,$f(x)=x(x+k)(x+2k)$とおく.曲線$y=f(x)$を$C$とする.

(1)関数$f(x)$は異なる$2$つの極値をもつことを示しなさい.
(2)曲線$C$上の極値をとる点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点$\mathrm{R}$の座標を求めなさい.
(3)点$\mathrm{R}$が曲線$C$上にあることを示し,点$\mathrm{R}$における曲線$C$の接線の方程式を求めなさい.
大分大学 国立 大分大学 2014年 第1問
$k>0$とし,$f(x)=x(x+k)(x+2k)$とおく.曲線$y=f(x)$を$C$とする.

(1)関数$f(x)$は異なる$2$つの極値をもつことを示しなさい.
(2)曲線$C$上の極値をとる点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点$\mathrm{R}$の座標を求めなさい.
(3)点$\mathrm{R}$が曲線$C$上にあることを示し,点$\mathrm{R}$における曲線$C$の接線の方程式を求めなさい.
大分大学 国立 大分大学 2014年 第1問
$k>0$とし,$f(x)=x(x+k)(x+2k)$とおく.曲線$y=f(x)$を$C$とする.

(1)関数$f(x)$は異なる$2$つの極値をもつことを示しなさい.
(2)曲線$C$上の極値をとる点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点$\mathrm{R}$の座標を求めなさい.
(3)点$\mathrm{R}$が曲線$C$上にあることを示し,点$\mathrm{R}$における曲線$C$の接線の方程式を求めなさい.
東京海洋大学 国立 東京海洋大学 2014年 第1問
$1$辺の長さが$1$である正五角形$\mathrm{ABCDE}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AE}}=\overrightarrow{b}$とし,線分$\mathrm{AC}$の長さを$k$とする.

(1)$\overrightarrow{\mathrm{AC}}$を$\overrightarrow{a},\ \overrightarrow{b},\ k$を用いて表せ.ただし,線分$\mathrm{AB}$と線分$\mathrm{EC}$が平行であることを用いてよい.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$k$を用いて表せ.
(3)$k$の値を求めよ.
(4)$\cos \angle \mathrm{BAE}$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2014年 第4問
座標平面上の放物線$C:y=-x^2+2ax-a^2+a+1$を考える.$a$が実数の範囲を動くとき,以下の問いに答えよ.

(1)$C$と放物線$\displaystyle y=x^2+\frac{1}{2}$との$2$つの共有点を結んだ線分の中点(共有点が$1$つの場合にはその点自身とする)が描く軌跡の長さを求めよ.
(2)$\displaystyle y \geqq x^2+\frac{1}{2}$の表す領域のうちで$C$が通過する部分の面積を求めよ.
山形大学 国立 山形大学 2014年 第4問
座標平面上の$1$次変換$f$は点$(1,\ 2)$を点$\displaystyle \left( \frac{1}{2}-\sqrt{3},\ 1+\frac{\sqrt{3}}{2} \right)$に,点$(3,\ 4)$を点$\displaystyle \left( \frac{3}{2}-2 \sqrt{3},\ 2+\frac{3 \sqrt{3}}{2} \right)$に移すとする.$\mathrm{O}$を原点として,次の問に答えよ.

(1)$1$次変換$f$を表す行列$A$を求めよ.
(2)点$\mathrm{P}(1,\ 0)$が$f$により点$\mathrm{Q}$に移るとき,$\angle \mathrm{POQ}$を求めよ.また線分$\mathrm{OQ}$の長さを求めよ.
(3)点$\mathrm{R}$を$(2 \cos \theta,\ 2 \sin \theta)$で定める$\displaystyle \left( 0<\theta \leqq \frac{\pi}{2} \right)$.$f$により,点$\mathrm{R}$は点$\mathrm{S}$に,点$\mathrm{S}$は点$\mathrm{T}$に,点$\mathrm{T}$は点$\mathrm{U}$に,点$\mathrm{U}$は点$\mathrm{V}$に移るとする.

(i) 三角形$\mathrm{ORS}$の面積を求めよ.
(ii) 点$(2,\ 0)$と点$\mathrm{R}$,$\mathrm{S}$,$\mathrm{T}$,$\mathrm{U}$,$\mathrm{V}$を頂点とする六角形の面積$H(\theta)$の最大値と,そのときの$\theta$の値を求めよ.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。