タグ「線分」の検索結果

38ページ目:全1074問中371問~380問を表示)
鹿児島大学 国立 鹿児島大学 2014年 第1問
次の各問いに答えよ.

(1)三角形$\mathrm{ABC}$において辺$\mathrm{AB}$上に点$\mathrm{D}$を,辺$\mathrm{AC}$上に点$\mathrm{E}$をとり,線分$\mathrm{BE}$と線分$\mathrm{CD}$の交点を$\mathrm{F}$とする.点$\mathrm{A}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が同一円周上にあり,さらに角のあいだに
\[ \angle \mathrm{AEB}=2 \angle \mathrm{ABE}=4 \angle \mathrm{ACD} \]
という関係が成り立つとき,$\angle \mathrm{BAC}$の値を求めよ.
(2)$4$個のさいころを同時に投げるとき,$3$の倍数の目のみが出る確率を求めよ.
(3)正の実数$x,\ y$に関する次の各命題の真偽を述べよ.また,真ならば証明し,偽ならば反例をあげよ.

(i) $x$が無理数かつ$y$が有理数ならば,その和$x+y$は無理数である.
(ii) $x$が無理数かつ$y$が無理数ならば,その和$x+y$は無理数である.
鹿児島大学 国立 鹿児島大学 2014年 第1問
次の各問いに答えよ.

(1)三角形$\mathrm{ABC}$において辺$\mathrm{AB}$上に点$\mathrm{D}$を,辺$\mathrm{AC}$上に点$\mathrm{E}$をとり,線分$\mathrm{BE}$と線分$\mathrm{CD}$の交点を$\mathrm{F}$とする.点$\mathrm{A}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が同一円周上にあり,さらに角のあいだに
\[ \angle \mathrm{AEB}=2 \angle \mathrm{ABE}=4 \angle \mathrm{ACD} \]
という関係が成り立つとき,$\angle \mathrm{BAC}$の値を求めよ.
(2)$4$個のさいころを同時に投げるとき,$3$の倍数の目のみが出る確率を求めよ.
(3)正の実数$x,\ y$に関する次の各命題の真偽を述べよ.また,真ならば証明し,偽ならば反例をあげよ.

(i) $x$が無理数かつ$y$が有理数ならば,その和$x+y$は無理数である.
(ii) $x$が無理数かつ$y$が無理数ならば,その和$x+y$は無理数である.
九州工業大学 国立 九州工業大学 2014年 第1問
空間において$1$点$\mathrm{O}$を固定し,$\mathrm{O}$に関する位置ベクトルが$\overrightarrow{p}$である点$\mathrm{P}$を$\mathrm{P}(\overrightarrow{p})$で表す.$4$点$\mathrm{O}$,$\mathrm{A}(\overrightarrow{a})$,$\mathrm{B}(\overrightarrow{b})$,$\mathrm{C}(\overrightarrow{c})$を頂点とする四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{BC}$を$s:1-s (0<s<1)$に内分する点をそれぞれ$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.また,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とし,$\displaystyle \overrightarrow{h}=\overrightarrow{a}-\frac{9}{16} \overrightarrow{b}+\frac{9}{16} \overrightarrow{c}$を位置ベクトルとする平面$\alpha$上の点を$\mathrm{H}(\overrightarrow{h})$とする.$\mathrm{OA}=\mathrm{AB}=3$,$\mathrm{OB}=3 \sqrt{2}$,$\mathrm{OC}=\mathrm{BC}=4$,$\mathrm{AC}=5$として,次に答えよ.

(1)ベクトル$\overrightarrow{\mathrm{DE}}$,$\overrightarrow{\mathrm{DF}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$s$を用いて表せ.また,内積$\overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分$\mathrm{OH}$の長さを求めよ.
(3)$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$の定める平面が点$\mathrm{H}$を通るときの$s$の値を求めよ.
(4)$s$を$(3)$で求めた値とするとき,四面体$\mathrm{OAFC}$の体積$V$を求めよ.
鳴門教育大学 国立 鳴門教育大学 2014年 第4問
$2$次関数$y=2x^2-(3k+1)x+k+5$,および$y=-x^2+(k+2)x+k-1$で表されるグラフを,それぞれ$C_1$,$C_2$とするとき,次の問いに答えなさい.

(1)$C_1$,$C_2$が$2$つの異なる交点をもつような定数$k$の値の範囲を求めなさい.また,$k$がその範囲にあるとき,$2$つの交点を結ぶ線分の中点の$x$座標を求めなさい.
(2)$C_1$,$C_2$が$2$つの異なる交点をもち,これら$2$つの交点を通る直線の傾きが$3$となるときの$k$の値を求めなさい.
愛知教育大学 国立 愛知教育大学 2014年 第1問
円$C:x^2+y^2=1$上に$2$点$\mathrm{N}(0,\ 1)$,$\mathrm{S}(0,\ -1)$をとる.また$x$軸上に点$\mathrm{P}(a,\ 0) (a>1)$をとり,直線$\mathrm{NP}$と円$C$との交点で,点$\mathrm{N}$とは異なる点を$\mathrm{Q}$とする.さらに,直線$\mathrm{SQ}$と$x$軸との交点を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)直線$\mathrm{NP}$の方程式を求め,点$\mathrm{Q}$の座標を$a$を用いて表せ.
(2)直線$\mathrm{SQ}$の方程式を求め,点$\mathrm{R}$の座標を$a$を用いて表せ.
(3)線分$\mathrm{PR}$の長さが$2$になるときの$a$の値を求めよ.
愛知教育大学 国立 愛知教育大学 2014年 第5問
座標空間内の$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$に対して線分$\mathrm{OA}$の中点を$\mathrm{P}$,線分$\mathrm{AB}$を$q:(1-q)$の比に内分する点を$\mathrm{Q}$,線分$\mathrm{BC}$を$r:(1-r)$の比に内分する点を$\mathrm{R}$,線分$\mathrm{CO}$を$s:(1-s)$の比に内分する点を$\mathrm{S}$とする.ただし,$0<q<1$,$0<r<1$,$0<s<1$である.$4$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$が同一平面上にあるとき,$s$を$q,\ r$を用いて表せ.
岐阜大学 国立 岐阜大学 2014年 第1問
$t$は実数で$0<t<2$とする.図のように,$1$辺の長さが$2$の正四面体$\mathrm{ABCD}$の辺$\mathrm{AC}$上に点$\mathrm{P}$があり,辺$\mathrm{AD}$上に点$\mathrm{Q}$がある.$\mathrm{CP}=\mathrm{AQ}=t$のとき,以下の問に答えよ.
(図は省略)

(1)線分$\mathrm{BP}$,$\mathrm{PQ}$,$\mathrm{QB}$の長さを,それぞれ$t$を用いて表せ.
(2)$t$が$0<t<2$の範囲を変化するとき,三角形$\mathrm{BPQ}$の$3$辺の長さの和の最小値を求めよ.
(3)三角錐$\mathrm{ABPQ}$の体積を$t$を用いて表せ.
(4)$t$が$0<t<2$の範囲を変化するとき,三角錐$\mathrm{ABPQ}$の体積の最大値を求めよ.
奈良女子大学 国立 奈良女子大学 2014年 第2問
$r$を$0<r<2$をみたす実数とする.座標平面上の$4$点$\mathrm{A}(2-r,\ 2-r)$,$\mathrm{B}(-2+r,\ 2-r)$,$\mathrm{C}(-2+r,\ -2+r)$,$\mathrm{D}(2-r,\ -2+r)$を頂点とする正方形を考える.この正方形$\mathrm{ABCD}$の周上を動く点を$\mathrm{P}$とし,$\mathrm{P}$を中心とする半径$r$の円を$\mathrm{O}$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$が線分$\mathrm{AB}$上を$\mathrm{A}$から$\mathrm{B}$まで動くとき,円$\mathrm{O}$の周および内部が通過してできる図形の面積を求めよ.
(2)点$\mathrm{P}$が正方形$\mathrm{ABCD}$の周上を一周するとき,円$\mathrm{O}$の周および内部が通過してできる図形の面積$S$を求めよ.
(3)$(2)$で求めた$S$を最大にする$r$の値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2014年 第2問
$xy$平面上に$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 3)$を直径の両端とする円がある.図のようにこの円と$x$軸との原点以外の交点を$\mathrm{B}$,線分$\mathrm{OA}$に関して$\mathrm{B}$と反対側の円周上に$\angle \mathrm{COA}={45}^\circ$を満たす点$\mathrm{C}$をとり,線分$\mathrm{CA}$の延長線と$x$軸との交点を$\mathrm{D}$とする.以下の問いに答えよ.
(図は省略)

(1)$\triangle \mathrm{AOD}$の外心を$\mathrm{P}$として,$\angle \mathrm{OPD}$の大きさを求めよ.
(2)点$\mathrm{D}$の座標を求めよ.
(3)$\triangle \mathrm{AOD}$の外接円の方程式を求めよ.
(4)$\angle \mathrm{AOB}$の二等分線と線分$\mathrm{AD}$との交点を$\mathrm{E}$とし,$\overrightarrow{\mathrm{OE}}$を成分表示せよ.
大阪教育大学 国立 大阪教育大学 2014年 第2問
座標平面上の原点を$\mathrm{O}$とし,$3$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(1,\ 1)$,$\mathrm{C}(1,\ 0)$を考える.$x$軸上に点$\mathrm{P}$をとり,線分$\mathrm{AP}$の垂直二等分線を$\ell$とする.点$\mathrm{P}$を通り$x$軸に垂直な直線と$\ell$との交点を$\mathrm{Q}$とする.

(1)$\mathrm{AQ}=\mathrm{QP}$であることを証明せよ.
(2)点$\mathrm{P}$が$x$軸上を動くとき,点$\mathrm{Q}$の軌跡はどのような曲線を描くか図示せよ.
(3)点$\mathrm{P}$は$x$軸の閉区間$[0,\ 1]$にあるとする.このとき,直線$\ell$が正方形$\mathrm{ABCO}$を二つの部分に切る.そのうちの点$\mathrm{C}$を含む部分の面積を$S$とする.$S$の最大値と最小値を求めよ.また,そのときの点$\mathrm{P}$の座標を求めよ.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。