タグ「線分」の検索結果

23ページ目:全1074問中221問~230問を表示)
山梨大学 国立 山梨大学 2015年 第4問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=a$,$\mathrm{OB}=b$,$\mathrm{AB}=1$とする.点$\mathrm{A}^\prime$および点$\mathrm{B}^\prime$をそれぞれ$\displaystyle \overrightarrow{\mathrm{AA}^\prime}=\frac{1}{a} \overrightarrow{\mathrm{OA}}$および$\displaystyle \overrightarrow{\mathrm{BB}^\prime}=\frac{1}{b} \overrightarrow{\mathrm{OB}}$となるようにとる.また,線分$\mathrm{AB}$を$t:(1-t)$に内分する点を$\mathrm{C}$とし,$\angle \mathrm{BAA}^\prime$の$2$等分線と$\angle \mathrm{ABB}^\prime$の$2$等分線の交点を$\mathrm{D}$とする.

(1)$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{OC}}$を$a,\ b,\ t$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OD}}$をベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(3)$3$点$\mathrm{O}$,$\mathrm{C}$,$\mathrm{D}$が一直線上にあるとき,$t$の値を求めよ.
山梨大学 国立 山梨大学 2015年 第5問
点$\mathrm{O}$を原点とする座標平面上において,点$\mathrm{P}(-6,\ 0)$をとる.また,曲線
\[ x=3 \cos \theta,\quad y=3 \sin \theta \quad (0 \leqq \theta \leqq \pi) \]
を$C_1$とする.曲線$C_2,\ C_3,\ \cdots,\ C_n,\ \cdots$を次のように順次定義する.

「点$\mathrm{Q}$が曲線$C_n$上を動くとき,線分$\mathrm{PQ}$を$1:2$に内分する点$\mathrm{R}$のなす曲線を$C_{n+1}$とする.」
また, 各自然数$n$に対して,点$\mathrm{P}$を通る$x$軸と異なる直線が曲線$C_n$と接するとき,その接点を$\mathrm{A}_n$とする.次に,$\theta$を$1$つ固定し,点$\mathrm{X}_1(x_1,\ y_1)$を$x_1=3 \cos \theta$,$y_1=3 \sin \theta$となる曲線$C_1$上の点とし,点$\mathrm{X}_2,\ \mathrm{X}_3,\ \cdots,\ \mathrm{X}_n,\ \cdots$を次のように順次定義する.
「線分$\mathrm{PX}_n$を$1:2$に内分する点を$\mathrm{X}_{n+1}(x_{n+1},\ y_{n+1})$とする.」

(1)$x_2$および$y_2$を$\theta$を用いて表せ.
(2)$\angle \mathrm{A}_1 \mathrm{PO}$および$\angle \mathrm{A}_2 \mathrm{PO}$を求めよ.
(3)$x_n,\ y_n$を$\theta$を用いて表せ.
(4)極限値$\displaystyle \lim_{n \to \infty}x_n$および$\displaystyle \lim_{n \to \infty}y_n$を求めよ.
(5)直線$\mathrm{A}_n \mathrm{A}_{n+1}$,曲線$C_n$および$C_{n+1}$で囲まれた領域の面積を$a_n$とするとき,極限値$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
東京学芸大学 国立 東京学芸大学 2015年 第1問
四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{CO}$をそれぞれ$2:1$に内分する点を$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.ベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$をそれぞれ$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$とおくとき,下の問いに答えよ.

(1)線分$\mathrm{BC}$上の点$\mathrm{P}$が$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$を含む平面上にあるとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$(1)$でとった点$\mathrm{P}$に対して,四角形$\mathrm{DEPF}$の対角線の交点を$\mathrm{Q}$としたとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
茨城大学 国立 茨城大学 2015年 第4問
鋭角三角形$\mathrm{ABC}$について,点$\mathrm{B}$,$\mathrm{C}$から対辺に下ろした垂線をそれぞれ$\mathrm{BD}$,$\mathrm{CE}$とし,$2$線分$\mathrm{BD}$,$\mathrm{CE}$の交点を$\mathrm{F}$とするとき,次の各問に答えよ.

(1)$\mathrm{BE} \cdot \mathrm{BA}+\mathrm{CD} \cdot \mathrm{CA}=\mathrm{BF} \cdot \mathrm{BD}+\mathrm{CF} \cdot \mathrm{CE}$を示せ.
(2)$\mathrm{BC}^2=\mathrm{BE} \cdot \mathrm{BA}+\mathrm{CD} \cdot \mathrm{CA}$を示せ.
宮城教育大学 国立 宮城教育大学 2015年 第3問
四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$は平面$\mathrm{OBC}$に直交し,
\[ \mathrm{OA}=\sqrt{6},\quad \mathrm{OB}=\mathrm{OC}=\mathrm{BC}=1 \]
であるとする.四面体$\mathrm{OABC}$の内部の点$\mathrm{P}$から,平面$\mathrm{OAB}$に下ろした垂線を$\mathrm{PD}$,平面$\mathrm{OBC}$に下ろした垂線を$\mathrm{PE}$,平面$\mathrm{OAC}$に下ろした垂線を$\mathrm{PF}$,平面$\mathrm{ABC}$に下ろした垂線を$\mathrm{PG}$とする.ここで,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$はそれぞれ平面$\mathrm{OAB}$,$\mathrm{OBC}$,$\mathrm{OAC}$,$\mathrm{ABC}$上の点である.$3$つの線分$\mathrm{PD}$,$\mathrm{PE}$,$\mathrm{PF}$の長さは等しく,その長さを$R$とする.辺$\mathrm{BC}$の中点を$\mathrm{H}$とすると,点$\mathrm{E}$は線分$\mathrm{OH}$上にあり,点$\mathrm{G}$は線分$\mathrm{AH}$上にある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおいて,次の問に答えよ.

(1)$\overrightarrow{\mathrm{HA}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また線分$\mathrm{HA}$の長さを求めよ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$R$を用いて表せ.
(3)線分$\mathrm{PG}$の長さが$R$であるとき,$R$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第3問
四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$は平面$\mathrm{OBC}$に直交し,
\[ \mathrm{OA}=\sqrt{6},\quad \mathrm{OB}=\mathrm{OC}=\mathrm{BC}=1 \]
であるとする.四面体$\mathrm{OABC}$の内部の点$\mathrm{P}$から,平面$\mathrm{OAB}$に下ろした垂線を$\mathrm{PD}$,平面$\mathrm{OBC}$に下ろした垂線を$\mathrm{PE}$,平面$\mathrm{OAC}$に下ろした垂線を$\mathrm{PF}$,平面$\mathrm{ABC}$に下ろした垂線を$\mathrm{PG}$とする.ここで,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$はそれぞれ平面$\mathrm{OAB}$,$\mathrm{OBC}$,$\mathrm{OAC}$,$\mathrm{ABC}$上の点である.$3$つの線分$\mathrm{PD}$,$\mathrm{PE}$,$\mathrm{PF}$の長さは等しく,その長さを$R$とする.辺$\mathrm{BC}$の中点を$\mathrm{H}$とすると,点$\mathrm{E}$は線分$\mathrm{OH}$上にあり,点$\mathrm{G}$は線分$\mathrm{AH}$上にある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおいて,次の問に答えよ.

(1)$\overrightarrow{\mathrm{HA}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また線分$\mathrm{HA}$の長さを求めよ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$R$を用いて表せ.
(3)線分$\mathrm{PG}$の長さが$R$であるとき,$R$の値を求めよ.
和歌山大学 国立 和歌山大学 2015年 第3問
正六角形$\mathrm{ABCDEF}$において,辺$\mathrm{BC}$の中点を$\mathrm{G}$,辺$\mathrm{DE}$を$t:(1-t)$に内分する点を$\mathrm{H}$とする.ただし,$0<t<1$である.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AF}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{AG}}$,$\overrightarrow{\mathrm{AH}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)直線$\mathrm{CF}$と直線$\mathrm{GH}$の交点を$\mathrm{I}$とするとき,$\mathrm{GI}:\mathrm{IH}$を求めよ.
(3)さらに,直線$\mathrm{AI}$と直線$\mathrm{CD}$の交点を$\mathrm{J}$とする.点$\mathrm{J}$が線分$\mathrm{CD}$を$1:2$に内分するとき,$t$の値を求めよ.
和歌山大学 国立 和歌山大学 2015年 第3問
正六角形$\mathrm{ABCDEF}$において,辺$\mathrm{BC}$の中点を$\mathrm{G}$,辺$\mathrm{DE}$を$t:(1-t)$に内分する点を$\mathrm{H}$とする.ただし,$0<t<1$である.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AF}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{AG}}$,$\overrightarrow{\mathrm{AH}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)直線$\mathrm{CF}$と直線$\mathrm{GH}$の交点を$\mathrm{I}$とするとき,$\mathrm{GI}:\mathrm{IH}$を求めよ.
(3)さらに,直線$\mathrm{AI}$と直線$\mathrm{CD}$の交点を$\mathrm{J}$とする.点$\mathrm{J}$が線分$\mathrm{CD}$を$1:2$に内分するとき,$t$の値を求めよ.
茨城大学 国立 茨城大学 2015年 第4問
$xy$平面において,関数$\displaystyle y=\frac{1}{\sqrt{x}}$が表す曲線を$C$とし,$C$上の点$\displaystyle \mathrm{P} \left( t,\ \frac{1}{\sqrt{t}} \right)$を考える.ただし,$t>0$とする.点$\mathrm{P}$における曲線$C$の接線が$x$軸と交わる点を$\mathrm{Q}$とする.このとき,以下の各問に答えよ.

(1)点$\mathrm{Q}$の座標を求めよ.
(2)曲線$C$,$x$軸,直線$x=t$,および点$\mathrm{Q}$を通り$x$軸に垂直な直線で囲まれた部分を,$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
(3)線分$\mathrm{PQ}$の長さを$L(t)$とする.点$\mathrm{P}$が$C$上を動くとき,$L(t)$の最小値を求めよ.
三重大学 国立 三重大学 2015年 第2問
平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\mathrm{BC}=2$を満たしているとする.また$\mathrm{B}^\prime$は$\mathrm{A}$から$\mathrm{C}$に向かう半直線上にあり,$\mathrm{AB}^\prime=8$となる点とする.$\mathrm{A}^\prime$は$\mathrm{B}$から$\mathrm{C}$に向かう半直線上にあり,$\mathrm{BA}^\prime>\mathrm{BC}$かつ$\angle \mathrm{B}^\prime \mathrm{A}^\prime \mathrm{C}=\angle \mathrm{BAC}$となる点とする.さらに$\mathrm{A}$,$\mathrm{B}$を通る直線と,$\mathrm{A}^\prime$,$\mathrm{B}^\prime$を通る直線の交点を$\mathrm{D}$とする.以下の問いに答えよ.
(図は省略)

(1)$\mathrm{DB}$と$\mathrm{DB}^\prime$を求めよ.
(2)$\cos \angle \mathrm{B}^\prime \mathrm{A}^\prime \mathrm{C}$の値を求めよ.また,それを用いて$\triangle \mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}$の面積を求めよ.
(3)$\mathrm{P}$を線分$\mathrm{DB}^\prime$上にあり,$\mathrm{DP}:\mathrm{PB}^\prime=1:3$となる点とする.また$\mathrm{P}^\prime$を線分$\mathrm{AP}$と線分$\mathrm{BC}$との交点とする.$\triangle \mathrm{ABP}^\prime$の面積を求めよ.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。