タグ「線分」の検索結果

20ページ目:全1074問中191問~200問を表示)
香川大学 国立 香川大学 2015年 第2問
図$1$のように,$\mathrm{AB}=\mathrm{AC}=5$,$\mathrm{BC}=6$の二等辺三角形$\mathrm{ABC}$内に,半径が等しい$2$つの円$\mathrm{O}_1$,$\mathrm{O}_2$が次の$2$つの条件を満たすように置かれているとする.
\begin{itemize}
円$\mathrm{O}_1$と円$\mathrm{O}_2$は外接する.
円$\mathrm{O}_1$は辺$\mathrm{AB}$と辺$\mathrm{BC}$に接し,円$\mathrm{O}_2$は辺$\mathrm{AC}$と辺$\mathrm{BC}$に接する.
\end{itemize}
このとき,次の問に答えよ.
(図は省略)

(1)辺$\mathrm{BC}$の中点を$\mathrm{M}$としたとき,線分$\mathrm{AM}$の長さを求めよ.
(2)円$\mathrm{O}_1$の半径$R$を求めよ.
(3)さらに円$\mathrm{O}_3$が図$2$のように円$\mathrm{O}_1$と円$\mathrm{O}_2$に外接し,辺$\mathrm{AB}$と辺$\mathrm{AC}$に接しているとき,円$\mathrm{O}_3$の半径$r$を求めよ.
鳥取大学 国立 鳥取大学 2015年 第3問
点$\mathrm{O}$を原点とする座標空間において,$4$点$\mathrm{O}$,$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(1,\ 2,\ 0)$,$\mathrm{C}(1,\ 1,\ 2)$を頂点とする四面体がある.点$\mathrm{O}$から平面$\mathrm{ABC}$に垂線$\mathrm{OH}$を下ろし,直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とするとき,次の問いに答えよ.

(1)実数$s,\ t,\ u$を用いて,$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$とおくとき,$s,\ t,\ u$を求めよ.
(2)線分$\mathrm{BP}$と線分$\mathrm{PC}$の長さの比$\mathrm{BP}:\mathrm{PC}$を求めよ.
(3)線分$\mathrm{AP}$の長さを求めよ.
鳥取大学 国立 鳥取大学 2015年 第2問
点$\mathrm{O}$を原点とする座標空間において,$4$点$\mathrm{O}$,$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(1,\ 2,\ 0)$,$\mathrm{C}(1,\ 1,\ 2)$を頂点とする四面体がある.点$\mathrm{O}$から平面$\mathrm{ABC}$に垂線$\mathrm{OH}$を下ろし,直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とするとき,次の問いに答えよ.

(1)実数$s,\ t,\ u$を用いて,$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$とおくとき,$s,\ t,\ u$を求めよ.
(2)線分$\mathrm{BP}$と線分$\mathrm{PC}$の長さの比$\mathrm{BP}:\mathrm{PC}$を求めよ.
(3)線分$\mathrm{AP}$の長さを求めよ.
大分大学 国立 大分大学 2015年 第2問
$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$1:2$に内分する点を$\mathrm{Q}$とし,辺$\mathrm{BC}$上に点$\mathrm{R}$があるとする.

(1)線分$\mathrm{PQ}$の中点を$\mathrm{M}$とし,点$\mathrm{A}$,$\mathrm{M}$,$\mathrm{R}$が一直線上にあるとき,$\mathrm{BR}:\mathrm{RC}$を求めなさい.
(2)$\triangle \mathrm{ABC}$の重心$\mathrm{G}$と$\triangle \mathrm{PRQ}$の重心$\mathrm{H}$が一致するとき,$\mathrm{BR}:\mathrm{RC}$を求めなさい.
(3)直線$\mathrm{AR}$,$\mathrm{BQ}$,$\mathrm{CP}$が一点で交わるとき,$\mathrm{BR}:\mathrm{RC}$を求めなさい.
佐賀大学 国立 佐賀大学 2015年 第1問
$\phantom{A}$
\[ f(x)=\left\{ \begin{array}{ll}
x(5-x) & (x \geqq 0) \\
x(x^2-1) & (x<0)
\end{array} \right. \]
とおき,関数$y=f(x)$のグラフを$C$とおく.直線$y=ax$と$C$は,原点$\mathrm{O}$およびそれ以外の$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているものとする.ただし,点$\mathrm{P}$の$x$座標は正,点$\mathrm{Q}$の$x$座標は負であるとする.線分$\mathrm{OP}$と$C$によって囲まれる図形の面積を$S_1(a)$,線分$\mathrm{OQ}$と$C$によって囲まれる図形の面積を$S_2(a)$とし,$S(a)=S_1(a)+S_2(a)$とおく.このとき,次の問に答えよ.

(1)$a$の値の範囲を求めよ.
(2)$S_1(a)$を$a$を用いて表せ.
(3)$S_2(a)$を$a$を用いて表せ.
(4)$(1)$で求めた範囲を$a$が変化するとき,$S(a)$の最小値を求めよ.
九州工業大学 国立 九州工業大学 2015年 第1問
四面体$\mathrm{OABC}$において,三角形$\mathrm{ABC}$は$1$辺の長さが$1$の正三角形であり,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=2$とする.また,点$\mathrm{C}$を通り平面$\mathrm{OAB}$に垂直な直線上に点$\mathrm{D}$があり,線分$\mathrm{CD}$の中点$\mathrm{H}$は平面$\mathrm{OAB}$に含まれるとする.すなわち,点$\mathrm{D}$は平面$\mathrm{OAB}$に関して,点$\mathrm{C}$と対称な点である.
(図は省略)
$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおいて,次に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$および$\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{a}$を求めよ.
(2)$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.また,$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$で表せ.
(3)直線$\mathrm{BH}$と直線$\mathrm{OA}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{BP}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表し,$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{a}$を求めよ.さらに,$\mathrm{OP}$および$\mathrm{BP}$の長さを求めよ.
(4)$(3)$で定めた点$\mathrm{P}$に対して,四角形$\mathrm{BCPD}$の面積$S$を求めよ.また,四角錐$\mathrm{O}$-$\mathrm{BCPD}$の体積$V$を求めよ.
長崎大学 国立 長崎大学 2015年 第2問
ひし形の紙がある(図$1$).点線で半分に折ると正三角形になった(図$2$).これを少し開いて机の上に立てると,三角錐の形になる(図$3$).その高さを次のようにして求めたい.
(図は省略)
(図は省略)
図$4$において,$2$つの正三角形$\mathrm{OAB}$と$\mathrm{OAC}$の$1$辺の長さを$1$とする.点$\mathrm{O}$と平面$\mathrm{ABC}$の距離が,三角錐$\mathrm{OABC}$の高さになる.空間ベクトルを利用してこの高さを求める.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\angle \mathrm{BOC}=\theta$とおき,線分$\mathrm{BC}$の中点を$\mathrm{M}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{AM}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$と$\overrightarrow{a} \cdot \overrightarrow{c}$の値を求めよ.また,$|\overrightarrow{b}+\overrightarrow{c}|^2$の値を$\cos \theta$を用いて表せ.
(3)実数$t$に対して$\overrightarrow{\mathrm{OH}}=(1-t) \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OM}}$とおくと,点$\mathrm{H}$は直線$\mathrm{AM}$上にある.このとき,$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{BC}}$が成り立つことを示せ.さらに,$\mathrm{H}$が$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{AM}}$を満たす点であるとき,$t$の値を$\cos \theta$を用いて表せ.
(4)三角錐$\mathrm{OABC}$の高さを$h$とする.$h$を$\cos \theta$を用いて表せ.さらに,$\overrightarrow{\mathrm{OM}} \perp \overrightarrow{\mathrm{AM}}$が成り立つとき,$\theta$と$h$の値を求めよ.
大分大学 国立 大分大学 2015年 第2問
$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$1:2$に内分する点を$\mathrm{Q}$とし,辺$\mathrm{BC}$上に点$\mathrm{R}$があるとする.

(1)線分$\mathrm{PQ}$の中点を$\mathrm{M}$とし,点$\mathrm{A}$,$\mathrm{M}$,$\mathrm{R}$が一直線上にあるとき,$\mathrm{BR}:\mathrm{RC}$を求めなさい.
(2)$\triangle \mathrm{ABC}$の重心$\mathrm{G}$と$\triangle \mathrm{PRQ}$の重心$\mathrm{H}$が一致するとき,$\mathrm{BR}:\mathrm{RC}$を求めなさい.
(3)直線$\mathrm{AR}$,$\mathrm{BQ}$,$\mathrm{CP}$が一点で交わるとき,$\mathrm{BR}:\mathrm{RC}$を求めなさい.
大分大学 国立 大分大学 2015年 第2問
$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$1:2$に内分する点を$\mathrm{Q}$とし,辺$\mathrm{BC}$上に点$\mathrm{R}$があるとする.

(1)線分$\mathrm{PQ}$の中点を$\mathrm{M}$とし,点$\mathrm{A}$,$\mathrm{M}$,$\mathrm{R}$が一直線上にあるとき,$\mathrm{BR}:\mathrm{RC}$を求めなさい.
(2)$\triangle \mathrm{ABC}$の重心$\mathrm{G}$と$\triangle \mathrm{PRQ}$の重心$\mathrm{H}$が一致するとき,$\mathrm{BR}:\mathrm{RC}$を求めなさい.
(3)直線$\mathrm{AR}$,$\mathrm{BQ}$,$\mathrm{CP}$が一点で交わるとき,$\mathrm{BR}:\mathrm{RC}$を求めなさい.
長崎大学 国立 長崎大学 2015年 第2問
$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(4,\ 0,\ 0)$,$\mathrm{C}(0,\ 4,\ 0)$,$\mathrm{D}(0,\ 0,\ 4)$をとり,下図のように線分$\mathrm{OA}$,$\mathrm{OC}$,$\mathrm{OD}$を$3$辺とする立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を考える.辺$\mathrm{DE}$,$\mathrm{BF}$の中点を,それぞれ$\mathrm{M}$,$\mathrm{N}$とする.以下の問いに答えよ.
(図は省略)

(1)ベクトル$\overrightarrow{\mathrm{GM}}$および$\overrightarrow{\mathrm{GN}}$を成分で表せ.
(2)$\angle \mathrm{MGN}=\theta$とする.$\cos \theta$の値を求めよ.
(3)$3$点$\mathrm{G}$,$\mathrm{M}$,$\mathrm{N}$を頂点とする三角形$\mathrm{GMN}$の面積を求めよ.
(4)三角錐$\mathrm{FGMN}$において,三角形$\mathrm{GMN}$を底面としたときの高さを求めよ.
(5)三角形$\mathrm{GMN}$を含む平面と線分$\mathrm{OF}$との交点を$\mathrm{P}$とする.このとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OF}}$を用いて表せ.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。