タグ「線分」の検索結果

19ページ目:全1074問中181問~190問を表示)
静岡大学 国立 静岡大学 2015年 第2問
$\triangle \mathrm{ABC}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,$|\overrightarrow{b}|=1$,$|\overrightarrow{c}|=\sqrt{3}$,$\overrightarrow{b} \cdot \overrightarrow{c}=1$であるとする.辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$に関して$\mathrm{B}$と対称な点を$\mathrm{E}$,直線$\mathrm{AE}$と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積$S_1$を求めよ.
(2)$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)$\mathrm{DF}:\mathrm{BC}$を求めよ.
(5)$\triangle \mathrm{DEF}$の面積$S_2$を求めよ.
静岡大学 国立 静岡大学 2015年 第1問
$\triangle \mathrm{ABC}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,$|\overrightarrow{b}|=1$,$|\overrightarrow{c}|=\sqrt{3}$,$\overrightarrow{b} \cdot \overrightarrow{c}=1$であるとする.辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$に関して$\mathrm{B}$と対称な点を$\mathrm{E}$,直線$\mathrm{AE}$と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積$S_1$を求めよ.
(2)$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)$\mathrm{DF}:\mathrm{BC}$を求めよ.
(5)$\triangle \mathrm{DEF}$の面積$S_2$を求めよ.
静岡大学 国立 静岡大学 2015年 第2問
$\triangle \mathrm{ABC}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,$|\overrightarrow{b}|=1$,$|\overrightarrow{c}|=\sqrt{3}$,$\overrightarrow{b} \cdot \overrightarrow{c}=1$であるとする.辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$に関して$\mathrm{B}$と対称な点を$\mathrm{E}$,直線$\mathrm{AE}$と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\mathrm{DF}:\mathrm{BC}$を求めよ.
熊本大学 国立 熊本大学 2015年 第3問
$a$と$b$を正の実数とする.$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$と$\angle \mathrm{C}$は鋭角とする.点$\mathrm{A}$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_1$とし,線分$\mathrm{AX}_1$の長さを$1$とする.また,$\mathrm{BX}_1=a$,$\mathrm{CX}_1=b$とする.各$n=1,\ 2,\ 3,\ \cdots$に対して以下の操作を行う.

辺$\mathrm{BC}$上の点$\mathrm{X}_n$を通り辺$\mathrm{AC}$に平行な直線を引き,辺$\mathrm{AB}$との交点を$\mathrm{Y}_n$とする.また,点$\mathrm{Y}_n$を通り辺$\mathrm{BC}$に平行な直線を引き,辺$\mathrm{AC}$との交点を$\mathrm{Z}_n$とする.点$\mathrm{Z}_n$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_{n+1}$とする.

線分$\mathrm{Z}_n \mathrm{X}_{n+1}$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_1$を$a,\ b$を用いて表せ.
(2)$l_{n+1}$を$l_n$,$a$,$b$を用いて表せ.
(3)$b=8a$のとき,$\displaystyle l_n>\frac{1}{2}$となる最小の奇数$n$を求めよ.必要ならば,$3.169<\log_2 9<3.17$を用いてよい.
熊本大学 国立 熊本大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$と$\angle \mathrm{C}$は鋭角とする.点$\mathrm{A}$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_1$とし,線分$\mathrm{AX}_1$の長さを$1$とする.また,$\mathrm{BX}_1=1$,$\mathrm{CX}_1=8$とする.各$n=1,\ 2,\ 3,\ \cdots$に対して以下の操作を行う.

辺$\mathrm{BC}$上の点$\mathrm{X}_n$を通り辺$\mathrm{AC}$に平行な直線を引き,辺$\mathrm{AB}$との交点を$\mathrm{Y}_n$とする.また,点$\mathrm{Y}_n$を通り辺$\mathrm{BC}$に平行な直線を引き,辺$\mathrm{AC}$との交点を$\mathrm{Z}_n$とする.点$\mathrm{Z}_n$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_{n+1}$とする.

線分$\mathrm{Z}_n \mathrm{X}_{n+1}$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_1$を求めよ.
(2)$l_{n+1}$を$l_n$を用いて表せ.
(3)数列$\{l_n\}$の一般項を求めよ.
熊本大学 国立 熊本大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$と$\angle \mathrm{C}$は鋭角とする.点$\mathrm{A}$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_1$とし,線分$\mathrm{AX}_1$の長さを$1$とする.また,$\mathrm{BX}_1=1$,$\mathrm{CX}_1=8$とする.各$n=1,\ 2,\ 3,\ \cdots$に対して以下の操作を行う.

辺$\mathrm{BC}$上の点$\mathrm{X}_n$を通り辺$\mathrm{AC}$に平行な直線を引き,辺$\mathrm{AB}$との交点を$\mathrm{Y}_n$とする.また,点$\mathrm{Y}_n$を通り辺$\mathrm{BC}$に平行な直線を引き,辺$\mathrm{AC}$との交点を$\mathrm{Z}_n$とする.点$\mathrm{Z}_n$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_{n+1}$とする.

線分$\mathrm{Z}_n \mathrm{X}_{n+1}$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_1$を求めよ.
(2)$l_{n+1}$を$l_n$を用いて表せ.
(3)$\displaystyle l_n>\frac{1}{2}$となる最小の奇数$n$を求めよ.必要ならば,$3.169<\log_2 9<3.17$を用いてもよい.
香川大学 国立 香川大学 2015年 第2問
図$1$のように,$\mathrm{AB}=\mathrm{AC}=5$,$\mathrm{BC}=6$の二等辺三角形$\mathrm{ABC}$内に,半径が等しい$2$つの円$\mathrm{O}_1$,$\mathrm{O}_2$が次の$2$つの条件を満たすように置かれているとする.
\begin{itemize}
円$\mathrm{O}_1$と円$\mathrm{O}_2$は外接する.
円$\mathrm{O}_1$は辺$\mathrm{AB}$と辺$\mathrm{BC}$に接し,円$\mathrm{O}_2$は辺$\mathrm{AC}$と辺$\mathrm{BC}$に接する.
\end{itemize}
このとき,次の問に答えよ.
(図は省略)

(1)辺$\mathrm{BC}$の中点を$\mathrm{M}$としたとき,線分$\mathrm{AM}$の長さを求めよ.
(2)円$\mathrm{O}_1$の半径$R$を求めよ.
(3)さらに円$\mathrm{O}_3$が図$2$のように円$\mathrm{O}_1$と円$\mathrm{O}_2$に外接し,辺$\mathrm{AB}$と辺$\mathrm{AC}$に接しているとき,円$\mathrm{O}_3$の半径$r$を求めよ.
鳥取大学 国立 鳥取大学 2015年 第2問
点$\mathrm{O}$を原点とする座標空間において,$4$点$\mathrm{O}$,$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(1,\ 2,\ 0)$,$\mathrm{C}(1,\ 1,\ 2)$を頂点とする四面体がある.点$\mathrm{O}$から平面$\mathrm{ABC}$に垂線$\mathrm{OH}$を下ろし,直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とするとき,次の問いに答えよ.

(1)実数$s,\ t,\ u$を用いて,$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$とおくとき,$s,\ t,\ u$を求めよ.
(2)線分$\mathrm{BP}$と線分$\mathrm{PC}$の長さの比$\mathrm{BP}:\mathrm{PC}$を求めよ.
(3)線分$\mathrm{AP}$の長さを求めよ.
香川大学 国立 香川大学 2015年 第2問
図$1$のように,$\mathrm{AB}=\mathrm{AC}=5$,$\mathrm{BC}=6$の二等辺三角形$\mathrm{ABC}$内に,半径が等しい$2$つの円$\mathrm{O}_1$,$\mathrm{O}_2$が次の$2$つの条件を満たすように置かれているとする.
\begin{itemize}
円$\mathrm{O}_1$と円$\mathrm{O}_2$は外接する.
円$\mathrm{O}_1$は辺$\mathrm{AB}$と辺$\mathrm{BC}$に接し,円$\mathrm{O}_2$は辺$\mathrm{AC}$と辺$\mathrm{BC}$に接する.
\end{itemize}
このとき,次の問に答えよ.
(図は省略)

(1)辺$\mathrm{BC}$の中点を$\mathrm{M}$としたとき,線分$\mathrm{AM}$の長さを求めよ.
(2)円$\mathrm{O}_1$の半径$R$を求めよ.
(3)さらに円$\mathrm{O}_3$が図$2$のように円$\mathrm{O}_1$と円$\mathrm{O}_2$に外接し,辺$\mathrm{AB}$と辺$\mathrm{AC}$に接しているとき,円$\mathrm{O}_3$の半径$r$を求めよ.
香川大学 国立 香川大学 2015年 第2問
図$1$のように,$\mathrm{AB}=\mathrm{AC}=5$,$\mathrm{BC}=6$の二等辺三角形$\mathrm{ABC}$内に,半径が等しい$2$つの円$\mathrm{O}_1$,$\mathrm{O}_2$が次の$2$つの条件を満たすように置かれているとする.
\begin{itemize}
円$\mathrm{O}_1$と円$\mathrm{O}_2$は外接する.
円$\mathrm{O}_1$は辺$\mathrm{AB}$と辺$\mathrm{BC}$に接し,円$\mathrm{O}_2$は辺$\mathrm{AC}$と辺$\mathrm{BC}$に接する.
\end{itemize}
このとき,次の問に答えよ.
(図は省略)

(1)辺$\mathrm{BC}$の中点を$\mathrm{M}$としたとき,線分$\mathrm{AM}$の長さを求めよ.
(2)円$\mathrm{O}_1$の半径$R$を求めよ.
(3)さらに円$\mathrm{O}_3$が図$2$のように円$\mathrm{O}_1$と円$\mathrm{O}_2$に外接し,辺$\mathrm{AB}$と辺$\mathrm{AC}$に接しているとき,円$\mathrm{O}_3$の半径$r$を求めよ.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。