タグ「線分」の検索結果

17ページ目:全1074問中161問~170問を表示)
大阪大学 国立 大阪大学 2015年 第3問
平面上に長さ$2$の線分$\mathrm{AB}$を直径とする円$C$がある.$2$点$\mathrm{A}$,$\mathrm{B}$を除く$C$上の点$\mathrm{P}$に対し,$\mathrm{AP}=\mathrm{AQ}$となるように線分$\mathrm{AB}$上の点$\mathrm{Q}$をとる.また,直線$\mathrm{PQ}$と円$C$の交点のうち,$\mathrm{P}$でない方を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)$\triangle \mathrm{AQR}$の面積を$\theta=\angle \mathrm{PAB}$を用いて表せ.
(2)点$\mathrm{P}$を動かして$\triangle \mathrm{AQR}$の面積が最大になるとき,$\overrightarrow{\mathrm{AR}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AP}}$を用いて表せ.
一橋大学 国立 一橋大学 2015年 第4問
$xyz$空間において,原点を中心とする$xy$平面上の半径$1$の円周上を点$\mathrm{P}$が動き,点$(0,\ 0,\ \sqrt{3})$を中心とする$xz$平面上の半径$1$の円周上を点$\mathrm{Q}$が動く.

(1)線分$\mathrm{PQ}$の長さの最小値と,そのときの点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(2)線分$\mathrm{PQ}$の長さの最大値と,そのときの点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
広島大学 国立 広島大学 2015年 第3問
座標空間内に$5$点
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A} \left(0,\ 0,\ \frac{3}{4} \right),\quad \mathrm{B}\left( \frac{1}{2},\ 0,\ \frac{1}{2} \right),\quad \mathrm{C}(s,\ t,\ 0),\quad \mathrm{D}(0,\ u,\ 0) \]
がある.ただし,$s,\ t,\ u$は実数で,$s>0$,$t>0$,$s+t=1$を満たすとする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面が$y$軸と点$\mathrm{D}$で交わっているとき,次の問いに答えよ.

(1)直線$\mathrm{AB}$と$x$軸との交点の$x$座標を求めよ.
(2)$u$を$t$を用いて表せ.また,$0<u<1$であることを示せ.
(3)点$(0,\ 1,\ 0)$を$\mathrm{E}$とする.点$\mathrm{D}$が線分$\mathrm{OE}$を$12:1$に内分するとき,$t$の値を求めよ.
神戸大学 国立 神戸大学 2015年 第1問
$s,\ t$を$s<t$をみたす実数とする.座標平面上の$3$点$\mathrm{A}(1,\ 2)$,$\mathrm{B}(s,\ s^2)$,$\mathrm{C}(t,\ t^2)$が一直線上にあるとする.以下の問に答えよ.

(1)$s$と$t$の間の関係式を求めよ.
(2)線分$\mathrm{BC}$の中点を$\mathrm{M}(u,\ v)$とする.$u$と$v$の間の関係式を求めよ.
(3)$s,\ t$が変化するとき,$v$の最小値と,そのときの$u,\ s,\ t$の値を求めよ.
神戸大学 国立 神戸大学 2015年 第3問
$a$を正の実数とする.座標平面上の曲線$C$を
\[ y=x^4-2(a+1)x^3+3ax^2 \]
で定める.曲線$C$が$2$つの変曲点$\mathrm{P}$,$\mathrm{Q}$をもち,それらの$x$座標の差が$\sqrt{2}$であるとする.以下の問に答えよ.

(1)$a$の値を求めよ.
(2)線分$\mathrm{PQ}$の中点と$x$座標が一致するような,$C$上の点を$\mathrm{R}$とする.三角形$\mathrm{PQR}$の面積を求めよ.
(3)曲線$C$上の点$\mathrm{P}$における接線が$\mathrm{P}$以外で$C$と交わる点を$\mathrm{P}^\prime$とし,点$\mathrm{Q}$における接線が$\mathrm{Q}$以外で$C$と交わる点を$\mathrm{Q}^\prime$とする.線分$\mathrm{P}^\prime \mathrm{Q}^\prime$の中点の$x$座標を求めよ.
広島大学 国立 広島大学 2015年 第1問
座標平面上の点$\mathrm{P}(1,\ 1)$を中心とし,原点$\mathrm{O}$を通る円を$C_1$とする.$k$を正の定数として,曲線$\displaystyle y=\frac{k}{x} (x>0)$を$C_2$とする.$C_1$と$C_2$は$2$点で交わるとし,その交点を$\mathrm{Q}$,$\mathrm{R}$とするとき,直線$\mathrm{PQ}$は$x$軸に平行であるとする.点$\mathrm{Q}$の$x$座標を$q$とし,点$\mathrm{R}$の$x$座標を$r$とする.次の問いに答えよ.

(1)$k,\ q,\ r$の値を求めよ.
(2)曲線$C_2$と線分$\mathrm{OQ}$,$\mathrm{OR}$で囲まれた部分の面積$S$を求めよ.
(3)$x=1+\sqrt{2} \sin \theta$とおくことにより,定積分$\displaystyle \int_r^q \sqrt{2-(x-1)^2} \, dx$の値を求めよ.
(4)円$C_1$の原点$\mathrm{O}$を含まない弧$\mathrm{QR}$と曲線$C_2$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
金沢大学 国立 金沢大学 2015年 第3問
関数$y=\log_3 x$とその逆関数$y=3^x$のグラフが,直線$y=-x+s$と交わる点をそれぞれ$\mathrm{P}(t,\ \log_3 t)$,$\mathrm{Q}(u,\ 3^u)$とする.次の問いに答えよ.

(1)線分$\mathrm{PQ}$の中点の座標は$\displaystyle \left( \frac{s}{2},\ \frac{s}{2} \right)$であることを示せ.
(2)$s,\ t,\ u$は$s=t+u$,$u=\log_3 t$を満たすことを示せ.
(3)$\displaystyle \lim_{t \to 3} \frac{su-k}{t-3}$が有限な値となるように,定数$k$の値を定め,その極限値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2015年 第4問
四面体$\mathrm{ABCD}$は

$(ⅰ)$ $\mathrm{BA}=\sqrt{66}$,$\mathrm{BC}=7$,$\mathrm{BD}=\sqrt{65}$
$(ⅱ)$ $\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}=28$,$\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{BD}}=35$,$\overrightarrow{\mathrm{BD}} \cdot \overrightarrow{\mathrm{BA}}=40$

を満たす.頂点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線を$\mathrm{AH}$とする.

(1)辺$\mathrm{AC}$の長さを求めよ.
(2)$\overrightarrow{\mathrm{BH}}$を$\overrightarrow{\mathrm{BC}}$,$\overrightarrow{\mathrm{BD}}$を用いて表せ.
(3)線分$\mathrm{CH}$の長さを求めよ.
(4)面$\mathrm{ABC}$を直線$\mathrm{AH}$の周りに$1$回転させるとき,面$\mathrm{ABC}$が通過する部分の体積$V$を求めよ.
東北大学 国立 東北大学 2015年 第5問
$t>0$を実数とする.座標平面において,$3$点$\mathrm{A}(-2,\ 0)$,$\mathrm{B}(2,\ 0)$,$\mathrm{P}(t,\ \sqrt{3}t)$を頂点とする三角形$\mathrm{ABP}$を考える.

(1)三角形$\mathrm{ABP}$が鋭角三角形となるような$t$の範囲を求めよ.
(2)三角形$\mathrm{ABP}$の垂心の座標を求めよ.
(3)辺$\mathrm{AB}$,$\mathrm{BP}$,$\mathrm{PA}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{Q}$,$\mathrm{R}$とおく.$t$が$(1)$で求めた範囲を動くとき,三角形$\mathrm{ABP}$を線分$\mathrm{MQ}$,$\mathrm{QR}$,$\mathrm{RM}$で折り曲げてできる四面体の体積の最大値と,そのときの$t$の値を求めよ.
埼玉大学 国立 埼玉大学 2015年 第2問
四面体$\mathrm{ABCD}$がある.線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$,$\mathrm{DA}$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$がある.点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$は同一平面上にあり,四面体のどの頂点とも異なるとする.このとき下記の設問に答えよ.

(1)$\mathrm{PQ}$と$\mathrm{RS}$が平行であるとき,等式
\[ \frac{\mathrm{AP}}{\mathrm{PB}} \cdot \frac{\mathrm{BQ}}{\mathrm{QC}} \cdot \frac{\mathrm{CR}}{\mathrm{RD}} \cdot \frac{\mathrm{DS}}{\mathrm{SA}}=1 \]
が成り立つことを示せ.
(2)$\mathrm{PQ}$と$\mathrm{RS}$が平行でないとき,等式
\[ \frac{\mathrm{AP}}{\mathrm{PB}} \cdot \frac{\mathrm{BQ}}{\mathrm{QC}} \cdot \frac{\mathrm{CR}}{\mathrm{RD}} \cdot \frac{\mathrm{DS}}{\mathrm{SA}}=1 \]
が成り立つことを示せ.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。