タグ「線分」の検索結果

16ページ目:全1074問中151問~160問を表示)
奈良県立医科大学 公立 奈良県立医科大学 2016年 第10問
(注:出題ミスで解けません)一辺の長さが$5$である正三角形$\mathrm{ABC}$とその外接円がある.図のように,点$\mathrm{D}$を直線$\mathrm{BC}$に関して点$\mathrm{A}$と異なる側で$\mathrm{AD}=6$となるようにとる.このとき,線分$\mathrm{BD}+\mathrm{CD}$の長さを求めよ.
(図は省略)
兵庫県立大学 公立 兵庫県立大学 2016年 第3問
三角形$\mathrm{ABC}$の辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,辺$\mathrm{CA}$を$1:2$に内分する点を$\mathrm{E}$,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{F}$とする.また線分$\mathrm{AD}$と線分$\mathrm{BE}$の交点を$\mathrm{P}$,線分$\mathrm{BE}$と線分$\mathrm{CF}$の交点を$\mathrm{Q}$,線分$\mathrm{CF}$と線分$\mathrm{AD}$の交点を$\mathrm{R}$とする.

(1)$\overrightarrow{\mathrm{AP}}=\ell \overrightarrow{\mathrm{AB}}+m \overrightarrow{\mathrm{AC}}$とするとき,$\ell$と$m$の値を求めよ.
(2)三角形$\mathrm{ABC}$の面積が$1$のとき,三角形$\mathrm{PQR}$の面積を求めよ.
北九州市立大学 公立 北九州市立大学 2016年 第4問
四面体$\mathrm{OABC}$と点$\mathrm{P}$について,$14 \overrightarrow{\mathrm{OP}}+5 \overrightarrow{\mathrm{AP}}+9 \overrightarrow{\mathrm{BP}}+7 \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}}$が成り立つとする.四面体$\mathrm{OABC}$,$\mathrm{PABC}$の体積をそれぞれ$V_1$,$V_2$とするとき,$V_1:V_2$を以下の手順で求めよ.

(1)$\overrightarrow{\mathrm{OP}}$を,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(2)線分$\mathrm{BC}$を$7:9$に内分する点を$\mathrm{D}$とするとき,$\overrightarrow{\mathrm{OP}}$を,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OD}}$を用いて表せ.
(3)点$\mathrm{P}$はどのような位置にあるか説明せよ.
(4)$V_1:V_2$を求めよ.
滋賀県立大学 公立 滋賀県立大学 2016年 第1問
実数$a,\ b,\ c$は,$a<b<c$,$a+b+c=0$を満たしている.このとき,放物線$C:y=ax^2+bx+c$を考える.

(1)$C$は$x$軸と異なる$2$点で交わることを示せ.
(2)$C$が$x$軸から切り取る線分の長さを$L$とする.このとき,$L^2$を$a,\ b$を用いて表せ.
(3)$(2)$で定義した$L$の値の範囲を求めよ.
兵庫県立大学 公立 兵庫県立大学 2016年 第2問
$\mathrm{AC}=\sqrt{6}$,$\mathrm{BC}=2$,$\displaystyle \angle \mathrm{ACB}=\frac{\pi}{12}$である$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$上に$2$点$\mathrm{P}$,$\mathrm{Q}$があり,$\angle \mathrm{BAP}=\angle \mathrm{PAQ}=\angle \mathrm{QAC}$が成り立っている.このとき,次の問いに答えよ.

(1)$\displaystyle \cos \frac{\pi}{12}$を求めよ.
(2)辺$\mathrm{AB}$の長さを求めよ.
(3)線分$\mathrm{PC}$の長さを求めよ.
県立広島大学 公立 県立広島大学 2016年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=2$,$\mathrm{OC}=4$,
\[ \angle \mathrm{AOB}=\frac{\pi}{2},\quad \angle \mathrm{AOC}=\frac{\pi}{3},\quad \angle \mathrm{BOC}=\frac{\pi}{3} \]
とする.また,線分$\mathrm{OA}$を$2:1$に外分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:2$に外分する点を$\mathrm{Q}$とする.線分$\mathrm{CQ}$,線分$\mathrm{CP}$の中点をそれぞれ$\mathrm{R}$,$\mathrm{S}$とし,直線$\mathrm{PR}$と直線$\mathrm{QS}$の交点を$\mathrm{T}$とする.さらに,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OT}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)点$\mathrm{T}$から平面$\mathrm{OAB}$に下ろした垂線を$\mathrm{TH}$とする.$\overrightarrow{\mathrm{HT}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)四面体$\mathrm{OABT}$の体積を求めよ.
前橋工科大学 公立 前橋工科大学 2016年 第2問
空間内の$3$点$\mathrm{A}(0,\ -1,\ 2)$,$\mathrm{B}(-3,\ -2,\ 4)$,$\mathrm{C}(1,\ 1,\ 3)$を通る平面を$\alpha$とする.次の問いに答えなさい.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$と$\triangle \mathrm{ABC}$の面積を求めなさい.
(2)原点$\mathrm{O}$から平面$\alpha$に垂線を下ろし,$\alpha$との交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標を求めなさい.
(3)直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,線分$\mathrm{AH}$と$\mathrm{AD}$の長さの比を求めなさい.
センター試験 問題集 センター試験 2015年 第2問
$\kagiichi$ \ 条件$p_1,\ p_2,\ q_1,\ q_2$の否定をそれぞれ$\overline{p_1},\ \overline{p_2},\ \overline{q_1},\ \overline{q_2}$と書く.

(1)次の$[ア]$に当てはまるものを,下の$\nagamarurei$~$\nagamarusan$のうちから一つ選べ.

命題「($p_1$かつ$p_2$) $\Longrightarrow$ ($q_1$かつ$q_2$)」の対偶は$[ア]$である.

$\nagamarurei$ ($\overline{p_1}$または$\overline{p_2}$) $\Longrightarrow$ ($\overline{q_1}$または$\overline{q_2}$)
$\nagamaruichi$ ($\overline{q_1}$または$\overline{q_2}$) $\Longrightarrow$ ($\overline{p_1}$または$\overline{p_2}$)
$\nagamaruni$ ($\overline{q_1}$かつ$\overline{q_2}$) $\Longrightarrow$ ($\overline{p_1}$かつ$\overline{p_2}$)
$\nagamarusan$ ($\overline{p_1}$かつ$\overline{p_2}$) $\Longrightarrow$ ($\overline{q_1}$かつ$\overline{q_2}$)
(2)自然数$n$に対する条件$p_1,\ p_2,\ q_1,\ q_2$を次のように定める.
\[\begin{array}{ll}
p_1:n \text{は素数である} & p_2:n+2 \text{は素数である} \\
q_1:n+1 \text{は} 5 \text{の倍数である} & q_2:n+1 \text{は}6 \text{の倍数である}
\end{array} \]
$30$以下の自然数$n$のなかで$[イ]$と$[ウエ]$は
命題「($p_1$かつ$p_2$) $\Longrightarrow$ ($\overline{q_1}$かつ$q_2$)」
の反例となる.
\mon[$\kagini$] $\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\angle \mathrm{ABC}={120}^\circ$とする.

このとき,$\mathrm{AC}=[オ]$,$\displaystyle \sin \angle \mathrm{ABC}=\frac{\sqrt{[カ]}}{[キ]}$であり,
$\displaystyle \sin \angle \mathrm{BCA}=\frac{[ク] \sqrt{[ケ]}}{[コサ]}$である.

直線$\mathrm{BC}$上に点$\mathrm{D}$を,$\mathrm{AD}=3 \sqrt{3}$かつ$\angle \mathrm{ADC}$が鋭角,となるようにとる.点$\mathrm{P}$を線分$\mathrm{BD}$上の点とし,$\triangle \mathrm{APC}$の外接円の半径を$R$とすると,$R$のとり得る値の範囲は$\displaystyle \frac{[シ]}{[ス]} \leqq R \leqq [セ]$である.
北海道大学 国立 北海道大学 2015年 第1問
$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=-(x-1)^2 \]
がある.$a$は$0$でない実数とし,$C_1$上の$2$点$\mathrm{P}(a,\ a^2)$,$\mathrm{Q}(-2a,\ 4a^2)$を通る直線と平行な$C_1$の接線を$\ell$とする.

(1)$\ell$の方程式を$a$で表せ.
(2)$C_2$と$\ell$が異なる$2$つの共有点をもつような$a$の値の範囲を求めよ.
(3)$C_2$と$\ell$が異なる$2$つの共有点$\mathrm{R}$,$\mathrm{S}$をもつとする.線分$\mathrm{PQ}$の長さと線分$\mathrm{RS}$の長さが等しくなるとき,$a$の値を求めよ.
京都大学 国立 京都大学 2015年 第3問
$6$個の点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が下図のように長さ$1$の線分で結ばれているとする.各線分をそれぞれ独立に確率$\displaystyle \frac{1}{2}$で赤または黒で塗る.赤く塗られた線分だけを通って点$\mathrm{A}$から点$\mathrm{E}$に至る経路がある場合はそのうちで最短のものの長さを$X$とする.そのような経路がない場合は$X$を$0$とする.このとき,$n=0,\ 2,\ 4$について,$X=n$となる確率を求めよ.
(図は省略)
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。