タグ「線分」の検索結果

13ページ目:全1074問中121問~130問を表示)
自治医科大学 私立 自治医科大学 2016年 第12問
円$C:(x-3)^2+(y+2)^2=2$と直線$\ell:y=2x-7$について考える.円$C$と直線$\ell$は,異なる$2$つの点$\mathrm{A}$,$\mathrm{B}$で交わる.線分$\mathrm{AB}$の長さを$m$とするとき,$\sqrt{5}m$の値を求めよ.
自治医科大学 私立 自治医科大学 2016年 第15問
$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{CA}$を$2:3$に内分する点を$\mathrm{Q}$とする.線分$\mathrm{AP}$と線分$\mathrm{BQ}$の交点を$\mathrm{S}$とし,直線$\mathrm{CS}$と辺$\mathrm{AB}$の交点を$\mathrm{R}$とする.線分$\mathrm{AR}$の長さが線分$\mathrm{AB}$の長さの$m$倍となるとき,$4m$の値を求めよ.
青山学院大学 私立 青山学院大学 2016年 第3問
$xyz$空間に点$\mathrm{A}(0,\ 0,\ 1)$がある.点$\mathrm{P}$は以下の条件を満たすとする.

(i) $\mathrm{AP}=2$.
(ii) 点$\mathrm{P}$の$y$座標は$1$.
(iii) 線分$\mathrm{AP}$は$xy$平面と交わる.ただし,点$\mathrm{P}$が$xy$平面上にあるときは,線分$\mathrm{AP}$と$xy$平面は点$\mathrm{P}$で交わるものとする.

このとき線分$\mathrm{AP}$と$xy$平面の交点を$\mathrm{Q}$とする.さらに点$\mathrm{P}$の$x$座標を$t$とするとき,以下の問に答えよ.

(1)点$\mathrm{P}$の$z$座標を$t$を用いて表せ.
(2)$t$がとりうる値の範囲を求めよ.
(3)点$\mathrm{Q}$の座標を$(u,\ v,\ 0)$とするとき,$u,\ v$を$t$を用いて表せ.
(4)$t$が$(2)$で求めた範囲を動くとき,点$(u,\ v)$の軌跡を座標平面上に図示せよ.
明治大学 私立 明治大学 2016年 第4問
次の設問の$[ ]$に適当な数を入れなさい.

点$(4,\ 2,\ 7)$を通りベクトル$\overrightarrow{a}=(2,\ 1,\ 4)$に平行な直線を$\ell$,点$(2,\ 12,\ -5)$を通りベクトル$\overrightarrow{b}=(1,\ 3,\ -3)$に平行な直線を$m$とし,直線$\ell$上の点を$\mathrm{P}$,直線$m$上の点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$が直線$\ell$および直線$m$と垂直であるとき,点$\mathrm{P}$の$x$座標は$[ ]$であり,線分$\mathrm{PQ}$の長さは$[ ]$である.
明治大学 私立 明治大学 2016年 第6問
次の設問の$[ ]$に適当な数を入れなさい.

$\triangle \mathrm{ABC}$において,$\mathrm{AB}=\sqrt{3}+1$,$\mathrm{BC}=2$,$\mathrm{CA}=\sqrt{6}$である.また,$\angle \mathrm{B}$の二等分線と辺$\mathrm{CA}$との交点を$\mathrm{D}$とする.

(1)$\cos A=[ ]$である.
(2)線分$\mathrm{AD}$の長さは$[ ]$である.
(3)線分$\mathrm{BD}$の長さは$[ ]$である.
(4)$\triangle \mathrm{ABC}$の外接円の半径は$[ ]$である.
(5)$\triangle \mathrm{ABC}$の内接円の半径は$[ ]$である.
立教大学 私立 立教大学 2016年 第2問
座標平面上における放物線$C:y=x^2-2x+1$と直線$\ell:y=x$の$2$つの交点のうち,$x$座標の値が小さい方の点を$\mathrm{A}(p,\ p)$とする.直線$\ell$上の点$\mathrm{B}(1,\ 1)$と点$\mathrm{A}$の間にある点$\mathrm{D}(q,\ q)$を通り$y$軸と平行な直線と放物線$C$との交点を$\mathrm{E}$とし,点$\mathrm{E}$を通り$x$軸と平行な直線と放物線$C$とのもう$1$つの交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$p$の値を求めよ.
(2)$\mathrm{EF}$の長さを$q$を用いて表せ.
(3)三角形$\mathrm{DEF}$の面積を$q$を用いて表せ.
(4)点$\mathrm{D}$が線分$\mathrm{AB}$上を動くとき,三角形$\mathrm{DEF}$の面積が最大となる$q$の値を求めよ.
(5)$q$が$(4)$で求めた値であるときの三角形$\mathrm{DEF}$の面積を求めよ.
明治大学 私立 明治大学 2016年 第2問
同一平面上において,点$\mathrm{O}$を中心とする半径$10$の円周上に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.線分$\mathrm{AB}$と直線$\mathrm{CO}$は交点を持ち,この交点を$\mathrm{P}$とする.$\mathrm{CP}=14$であり,$\mathrm{AP}:\mathrm{BP}=2:3$である.以下の問に答えなさい.

(1)$\overrightarrow{\mathrm{CA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CB}}=\overrightarrow{b}$とすると,$\displaystyle \overrightarrow{\mathrm{CP}}=\frac{[チ] \overrightarrow{a}+[ツ] \overrightarrow{b}}{[テ]}$である.
また,$\displaystyle \overrightarrow{\mathrm{OA}}=\frac{[ト] \overrightarrow{a}-[ナ] \overrightarrow{b}}{[ニ]}$と表すことができる.
(2)$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$についての計算から,内積$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{[ヌ][ネ][ノ]}{[ハ]}$となる.

さらに,$\mathrm{CA}=[ヒ] \sqrt{[フ][ヘ]}$,$\mathrm{CB}=[ホ] \sqrt{[マ]}$である.

(3)三角形$\mathrm{ABC}$の面積は$\displaystyle \frac{[ミ][ム][メ] \sqrt{[モ]}}{[ヤ]}$である.
明治大学 私立 明治大学 2016年 第3問
$1$辺の長さが$2$の正四面体$\mathrm{OABC}$がある.線分$\mathrm{AB}$を$p:(1-p) (0<p<1)$に内分する点を$\mathrm{D}$,線分$\mathrm{OC}$を$q:(1-q) (0<q<1)$に内分する点を$\mathrm{E}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.

(1)$\overrightarrow{\mathrm{DE}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ p,\ q$を用いて表し,次の空欄$[タ]$~$[ツ]$に$p,\ q$を用いた値や式を記せ.
\[ \overrightarrow{\mathrm{DE}}=\left( [タ] \right) \overrightarrow{a}+\left( [チ] \right) \overrightarrow{b}+\left( [ツ] \right) \overrightarrow{c} \quad \cdots\cdots ① \]
(2)${|\overrightarrow{\mathrm{DE|}}}^2$を求める過程を記した次の文章の空欄$[テ]$~$[ト]$に適切な値や式を記せ.
$\triangle \mathrm{OAB}$,$\triangle \mathrm{OBC}$,$\triangle \mathrm{OCA}$は,いずれも$1$辺の長さが$2$の正三角形だから,
\[ |\overrightarrow{a|}=|\overrightarrow{b|}=|\overrightarrow{c|}=2 \quad \cdots\cdots ② \]
かつ,
\[ \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{a}=[テ] \quad \cdots\cdots ③ \]
$①,\ ②,\ ③$より,${|\overrightarrow{\mathrm{DE|}}}^2$は$p,\ q$を用いて次のように表せる.
\[ {|\overrightarrow{\mathrm{DE|}}}^2=4 \left( [ト] \right) \quad \cdots\cdots ④ \]
(3)点$\mathrm{D}$,点$\mathrm{E}$がそれぞれ$\mathrm{AB}$,$\mathrm{OC}$上を動くとき,${|\overrightarrow{\mathrm{DE|}}}$の最小値を求める過程を記した次の文章の空欄$[ナ]$~$[ネ]$に適切な値や式を記せ.
$④$は次のように変形できる.
\[ {|\overrightarrow{\mathrm{DE|}}}^2=4 \left\{ \left( p-[ナ] \right)^2+\left( q-[ニ] \right)^2+[ヌ] \right\} \quad \cdots\cdots ⑤ \]
$⑤$より,${|\overrightarrow{\mathrm{DE|}}}$は$p=[ナ]$,$q=[ニ]$のとき最小値$[ネ]$をとる.
大阪薬科大学 私立 大阪薬科大学 2016年 第3問
次の問いに答えなさい.

点$\mathrm{O}$を原点とする$xy$座標平面上に点$\mathrm{A}(2,\ 4)$と点$\mathrm{B}(5,\ 2)$,および直線$\ell$がある.

(1)$\ell$の方程式は$\displaystyle y=\frac{1}{2}(-x+1)$である.

(i) 点$\mathrm{P}$が$\ell$上の点であるとき,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}$の値を求めよ.
(ii) $\ell$上の$\mathrm{P}$に対し,$|\overrightarrow{\mathrm{OP}}|^2$のとり得る最小の値を求めよ.

(2)$a$を$1$以上の定数とする.$xy$座標平面上の点$\mathrm{Q}$が,線分$\mathrm{AQ}$の中点$\mathrm{M}$を用いて,
\[ a|\overrightarrow{\mathrm{AQ}}|^2=4|\overrightarrow{\mathrm{OM}}|^2+4|\overrightarrow{\mathrm{BM}}|^2 \]
を満たしながら動くとき,その$\mathrm{Q}$の軌跡を$C$とする.

(i) $C$が直線となるときの$a$の値を求めよ.
(ii) $a=1$のとき,$C$上の$\mathrm{Q}$に対し,$|\overrightarrow{\mathrm{OQ}}|^2$のとり得る最小の値を求めよ.
明治大学 私立 明治大学 2016年 第2問
四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$の中点を$\mathrm{P}$,線分$\mathrm{BC}$の中点を$\mathrm{Q}$,線分$\mathrm{PQ}$の中点を$\mathrm{R}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき,次の問いに答えなさい.

(1)$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[ア]}{[イ]}(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})$である.
(2)線分$\mathrm{AR}$を延長し,三角形$\mathrm{OBC}$と交わる点を$\mathrm{S}$とする.$\mathrm{AR}:\mathrm{AS}=1:t$とすると,$\displaystyle t=\frac{[ウ]}{[エ]}$である.また,$\displaystyle \overrightarrow{\mathrm{OS}}=\frac{[オ]}{[カ]}(\overrightarrow{b}+\overrightarrow{c})$である.
(3)$\angle \mathrm{OAS}=\theta$とすると,$\displaystyle \cos \theta=\frac{\sqrt{[キ]}}{[ク]}$である.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。