タグ「線分」の検索結果

107ページ目:全1074問中1061問~1070問を表示)
北海道医療大学 私立 北海道医療大学 2010年 第2問
$1$辺の長さが$1$の正三角形$\mathrm{ABC}$において,図のように辺$\mathrm{BC}$上に点$\mathrm{D}$を$\mathrm{BD}:\mathrm{DC}=2:1$となるようにとる.以下の問に答えよ.
(図は省略)

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)$\triangle \mathrm{ABD}$の面積と$\triangle \mathrm{ADC}$の面積をそれぞれ求めよ.
(3)$\mathrm{AD}$の長さを求めよ.
(4)$\angle \mathrm{BAD}=\theta$とおくとき,$\sin \theta$と$\cos \theta$の値を求めよ.
(5)$\triangle \mathrm{ABD}$の内接円の中心を$\mathrm{O}$,半径を$r$とし,$\triangle \mathrm{ADC}$の内接円の中心を$\mathrm{O}^\prime$,半径を$r^\prime$とする.

\mon[$(5$-$1)$] $r$と$r^\prime$の値を求めよ.
\mon[$(5$-$2)$] 線分$\mathrm{OO}^\prime$の長さを$L$とする.$L^2$の値を求めよ.
関西大学 私立 関西大学 2010年 第2問
平面上の四角形$\mathrm{OABC}$について,$\mathrm{OA}=\mathrm{OB}=1$,$\displaystyle \mathrm{OC}=\frac{\sqrt{7}}{3}$および$\displaystyle \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OB}}-\frac{2}{3} \overrightarrow{\mathrm{OA}}$が成り立っているとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.次の$[ ]$をうめよ.

$\mathrm{CB}=[$1$]$,$\overrightarrow{a} \cdot \overrightarrow{b}=[$2$]$であり,$\angle \mathrm{AOB}$は$[$3$]$度である.
$t>0$とし,直線$\mathrm{OA}$上に点$\mathrm{D}$を$\overrightarrow{\mathrm{OD}}=t \overrightarrow{\mathrm{OA}}$となるようにとる.このとき,線分$\mathrm{OB}$と線分$\mathrm{CD}$との交点を$\mathrm{P}$とおくと,$t$を用いて$\overrightarrow{\mathrm{OP}}=[$4$] \overrightarrow{b}$と書ける.
$\triangle \mathrm{OPD}$の重心$\mathrm{G}$が$\triangle \mathrm{OAB}$の内部または周上にあるような$t$の範囲は$0<t \leqq [$5$]$である.また,$\triangle \mathrm{OPD}$の外心を$\mathrm{R}$とおくと,$\overrightarrow{\mathrm{OR}}-[$6$] \overrightarrow{\mathrm{OD}}$と$\overrightarrow{a}$が垂直であり,$\overrightarrow{\mathrm{OR}}-[$6$] \overrightarrow{\mathrm{OP}}$と$\overrightarrow{b}$も垂直であることから,$\displaystyle t=\frac{1}{3}$のとき,$\overrightarrow{\mathrm{OR}}=[$7$] \overrightarrow{a}+[$8$] \overrightarrow{b}$であり,$|\overrightarrow{\mathrm{OR}}|=[$9$]$である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2010年 第1問
空間内の四面体$\mathrm{OABC}$について,$|\overrightarrow{\mathrm{OA}}|=3 \sqrt{2}$,$|\overrightarrow{\mathrm{OB}}|=4$,$|\overrightarrow{\mathrm{OC}}|=3$,$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=\frac{9}{2}$,$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=\frac{11}{2}$,$\angle \mathrm{BAC}={60}^\circ$とする.このとき以下の$[$1$]$から$[$9$]$に該当する数値を答えなさい.

$|\overrightarrow{\mathrm{AB}}|=[$1$]$,$|\overrightarrow{\mathrm{AC}}|=[$2$]$であり,また,$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=[$3$]$である.
$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,
$\overrightarrow{\mathrm{OD}}=[$4$] \overrightarrow{\mathrm{OA}}+[$5$] \overrightarrow{\mathrm{OB}}+[$6$] \overrightarrow{\mathrm{OC}}$である.
$\triangle \mathrm{OAC}$の重心$\mathrm{G}$と点$\mathrm{B}$を結ぶ線分が$\triangle \mathrm{OAD}$と交わる点を$\mathrm{E}$とするとき,
$\overrightarrow{\mathrm{OE}}=[$7$] \overrightarrow{\mathrm{OA}}+[$8$] \overrightarrow{\mathrm{OB}}+[$9$] \overrightarrow{\mathrm{OC}}$である.
なお,この空間の任意のベクトル$\overrightarrow{p}$は,実数$s,\ t,\ u$を用いて,
$\overrightarrow{p}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}+u \overrightarrow{\mathrm{OC}}$
の形に表すことができ,しかも,表し方はただ$1$通りである.
神奈川大学 私立 神奈川大学 2010年 第2問
放物線$C:y=x^2$について,次の問いに答えよ.

(1)点$(1,\ 1)$を通り傾きが$a$である直線の方程式を求めよ.
(2)$(1)$で求めた直線と放物線$C$の共有点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(3)線分$\mathrm{PQ}$の中点の軌跡の方程式を求めよ.ただし,$\mathrm{P}$と$\mathrm{Q}$が一致するとき,線分$\mathrm{PQ}$の中点とは$\mathrm{P}$を意味するものとする.
(4)$(3)$で求めた軌跡,放物線$C$および$y$軸で囲まれた図形の面積を求めよ.
日本福祉大学 私立 日本福祉大学 2010年 第2問
以下の問いに答えよ.

(1)直線$y=2x+3$に対して,点$\mathrm{A}(1,\ 3)$と対称な点$\mathrm{A}^\prime$の座標を求めよ.
(2)点$\displaystyle \mathrm{B} \left( 2,\ \frac{6}{5} \right)$とするとき,直線$y=2x+3$上に点$\mathrm{P}$を取り,線分$\mathrm{AP}$と線分$\mathrm{PB}$の長さの和を最小にする点$\mathrm{P}$の座標を求めよ.
日本福祉大学 私立 日本福祉大学 2010年 第2問
以下の問いに答えよ.

(1)直線$y=2x+3$に対して,点$\mathrm{A}(1,\ 3)$と対称な点$\mathrm{A}^\prime$の座標を求めよ.
(2)点$\displaystyle \mathrm{B} \left( 2,\ \frac{6}{5} \right)$とするとき,直線$y=2x+3$上に点$\mathrm{P}$を取り,線分$\mathrm{AP}$と線分$\mathrm{PB}$の長さの和を最小にする点$\mathrm{P}$の座標を求めよ.
日本福祉大学 私立 日本福祉大学 2010年 第3問
$\triangle \mathrm{ABC}$において線分$\mathrm{AB}$を$3:2$に内分する点を$\mathrm{M}$とし,線分$\mathrm{AC}$の中点を$\mathrm{N}$とする.また,$2$直線$\mathrm{CM}$と$\mathrm{BN}$の交点を$\mathrm{P}$とし,直線$\mathrm{AP}$と辺$\mathrm{BC}$の交点を$\mathrm{Q}$とする.

(1)$\overrightarrow{\mathrm{CM}}$を,$\overrightarrow{\mathrm{CA}}$と$\overrightarrow{\mathrm{CB}}$で表せ.
(2)$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{AQ}}$をそれぞれ,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$で表せ.
早稲田大学 私立 早稲田大学 2010年 第5問
四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:1$に内分する点を$\mathrm{Q}$,線分$\mathrm{BC}$を$4:1$に内分する点を$\mathrm{R}$とする.この四面体を$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面で切り,この平面が線分$\mathrm{AC}$と交わる点を$\mathrm{S}$とするとき,線分の長さの比$\mathrm{AS}:\mathrm{SC}$を求めることを考えよう.\\
点$\mathrm{S}$は$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面上にあるから,定数$s,\ t,\ u$を用いて,
\[ \overrightarrow{\mathrm{OS}} = s \, \overrightarrow{\mathrm{OP}} + t \, \overrightarrow{\mathrm{OQ}} +u \, \overrightarrow{\mathrm{OR}} \quad (s+t+u=1) \]
と書くことができる.ここで,$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[ス]\overrightarrow{\mathrm{OB}}+[セ]\overrightarrow{\mathrm{OC}}}{[ソ]}$であるから,$\overrightarrow{\mathrm{OS}}$は$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$それぞれの定数倍の和として表すことができる.そこで,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$の係数をそれぞれ定数$s^{\prime},\ t^{\prime},\ u^{\prime}$とおくことにより
\[ \overrightarrow{\mathrm{OS}} = s^{\prime}\overrightarrow{\mathrm{OA}} + t^{\prime}\overrightarrow{\mathrm{OB}} +u^{\prime}\overrightarrow{\mathrm{OC}} \quad (18s^{\prime}+16t^{\prime}+11u^{\prime}=[タ]) \]
と書くことができる.ところが,点$\mathrm{S}$は線分$\mathrm{AC}$上にあることから,$s^{\prime},\ t^{\prime}\ u^{\prime}$を求めることができ,$\mathrm{AS}:\mathrm{SC}=[チ]:[ツ]$であることがわかる.
ただし,$[ソ]$,$[チ]$,$[ツ]$はできる限り小さい自然数で答えること.
首都大学東京 公立 首都大学東京 2010年 第2問
長さ$2$の線分$\mathrm{AB}$を直径とする半円周を点$\mathrm{A} = \mathrm{P}_0,\ \mathrm{P}_1,\ \cdots,\ \mathrm{P}_{n-1},\ \mathrm{P}_n = \mathrm{B}$で$n$等分する.このとき,以下の問いに答えなさい.

(1)三角形$\mathrm{AP}_k \mathrm{B}$の三辺の長さの和$\mathrm{AP}_k + \mathrm{P}_k \mathrm{B}+ \mathrm{BA}$を$l_n(k)$とおく.$l_n(k)$を求めなさい.
(2)極限値$\displaystyle \alpha = \lim_{n \to \infty} \frac{l_n(1) +l_n(2) + \cdots + l_n(n)}{n}$を求めなさい.
愛知県立大学 公立 愛知県立大学 2010年 第4問
原点をOとする座標平面上に2点P$(a,\ c)$およびQ$(b,\ d)$をとり,$\triangle$OPQを考える.線分OPが$x$軸の正の部分となす角を$\theta$とする.ただし,$\theta$は時計の針の回転と逆の向きを正とする.このとき,以下の問いに答えよ.

(1)$\sin \theta$と$\cos \theta$を$a,\ c$の式で表せ.
(2)点Qを原点の周りに$-\theta$だけ回転させた点を$(x,\ y)$とするとき,$x,\ y$を$a,\ b,\ c,\ d$で表せ.
(3)$\triangle$OPQの面積を$a,\ b,\ c,\ d$で表せ.
(4)一次変換
\[ A=\biggl( \begin{array}{cc}
\sqrt{2}+\sqrt{5} & 3 \\
1 & \sqrt{2}-\sqrt{5}
\end{array} \biggr) \]
によって,点P,Qがそれぞれ点P$^\prime$,Q$^\prime$に移されるものとする.$\triangle$OP$^\prime$Q$^\prime$の面積は$\triangle$OPQの何倍か.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。