タグ「線分」の検索結果

104ページ目:全1074問中1031問~1040問を表示)
長岡技術科学大学 国立 長岡技術科学大学 2010年 第1問
平面上の点P$_n$,Q$_n \ (n=1,\ 2,\ 3,\ \cdots)$を次のように定める. \\
P$_1(0,\ 0)$,Q$_1(0,\ 1)$とする. P$_n$,Q$_n$が定められているとして,Q$_n$を中心にP$_n$を時計回りに$\displaystyle \frac{\pi}{2}$回転させた点をP$_{n+1}$とする.さらに,P$_{n+1}$を中心にQ$_n$を反時計回りに$\displaystyle \frac{\pi}{2}$回転させた点とP$_{n+1}$の中点をQ$_{n+1}$とする.このとき,以下の問いに答えなさい.

(1)P$_2$,P$_3$の座標を求めなさい.
(2)すべてのP$_n$を通る直線の方程式を求めなさい.
(3)線分P$_n$Q$_n$の長さを$n$の式で表しなさい.
(4)P$_n$の$x$座標を$x_n$とおく.$x_n$を$n$の式で表しなさい.
(5)$\displaystyle \lim_{n \to \infty}x_n$を求めなさい.
千葉大学 国立 千葉大学 2010年 第7問
$\triangle \mathrm{ABC}$は,1辺の長さが1の正三角形で,$t$は正の実数とする.$\overrightarrow{b}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{AC}}$とおく.直線$\mathrm{AB},\ \mathrm{AC}$上にそれぞれ点$\mathrm{D},\ \mathrm{E}$があり,$\overrightarrow{\mathrm{AD}}=t \overrightarrow{b}$,$\overrightarrow{\mathrm{AE}}=t \overrightarrow{c}$をみたしている.正三角形$\triangle \mathrm{ADE}$の重心を$\mathrm{G}$,線分$\mathrm{BE}$の中点を$\mathrm{M}$とする.

(1)内積$\overrightarrow{\mathrm{MC}} \cdot \overrightarrow{\mathrm{MG}}$を計算せよ.
(2)$t$が正の実数全体を動くとき,$\triangle \mathrm{CGM}$の面積を最小にする$t$の値と,そのときの面積を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第1問
平面上に大きさが1のベクトル$\overrightarrow{a}$と大きさが2のベクトル$\overrightarrow{b}$があり,そのなす角が$60^\circ$である.いま,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AC}}=k \overrightarrow{a}+\overrightarrow{b} \ (k \neq -1)$となる$\triangle \mathrm{ABC}$がある.$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$の中点を$\mathrm{M}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{N}$とし,線分$\mathrm{AN}$と線分$\mathrm{CM}$の交点を$\mathrm{P}$とする.また,点$\mathrm{Q}$は2点$\mathrm{A},\ \mathrm{C}$を通る直線上にあり,$\overrightarrow{\mathrm{PQ}} \perp \overrightarrow{\mathrm{AB}}$をみたす.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$k$を用いて表せ.
(2)$\overrightarrow{\mathrm{AQ}}=l \overrightarrow{\mathrm{AC}}$をみたす$l$を$k$を用いて表せ.
(3)点$\mathrm{Q}$が辺$\mathrm{AC}$上にあるとき,$k$の値の範囲を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第1問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$がある.辺$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{D}$,辺$\mathrm{BC}$を$2:1$に内分する点を$\mathrm{E}$とする.また,線分$\mathrm{DE}$を$t:1-t \ (0<t<1)$に内分する点を$\mathrm{X}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$として,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OX}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$t$を用いて表せ.
(2)点$\mathrm{P}$は線分$\mathrm{DE}$上にあり,$\overrightarrow{\mathrm{OP}} \perp \overrightarrow{\mathrm{DE}}$をみたす.$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)(2)で定まる点$\mathrm{P}$について,直線$\mathrm{OP}$と3点$\mathrm{A},\ \mathrm{B},\ \mathrm{C}$の定める平面との交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
福岡教育大学 国立 福岡教育大学 2010年 第4問
空間上に相異なる$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,線分$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$は互いに直交している.次の問いに答えよ.

(1)$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$からの距離が全て等しくなる点がただ一つ存在する.この点を$\mathrm{G}$とする.線分$\mathrm{OA}$の中点を$\mathrm{M}$とする.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{MG}}$が直交することを用いて,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OG}}=\frac{1}{2}|\overrightarrow{\mathrm{OA}}|^2 \]
となることを示せ.ただし,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OG}}$は$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OG}}$の内積とする.
(2)(1)を用いて,
\[ \overrightarrow{\mathrm{OG}}=\frac{1}{2}(\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}) \]
が成り立つことを示せ.
(3)$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{P}(1,\ \sqrt{3},\ 0)$,$\displaystyle \mathrm{Q} \left( -\frac{\sqrt{6}}{2},\ \frac{\sqrt{2}}{2},\ \sqrt{2} \right)$,$\displaystyle \mathrm{R} \left( \frac{\sqrt{6}}{4},\ -\frac{\sqrt{2}}{4},\ \frac{\sqrt{2}}{2} \right)$とする.このとき線分$\mathrm{OP}$,$\mathrm{OQ}$,$\mathrm{OR}$は互いに直交していることを示せ.また,$4$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る球面の半径を求めよ.
山梨大学 国立 山梨大学 2010年 第6問
行列$A=\left( \begin{array}{cc}
\displaystyle\frac{3}{2} & -\displaystyle\frac{\sqrt{3}}{2} \\
\displaystyle\frac{\sqrt{3}}{2} & \displaystyle\frac{3}{2}
\end{array} \right)$と点$\mathrm{O}(0,\ 0)$,点$\mathrm{X}_0(1,\ 0)$がある.行列$A$で表される移動によって点$\mathrm{X}_0$は点$\mathrm{X}_1$へ移り,行列$A^2$で表される移動によって点$\mathrm{X}_0$は点$\mathrm{X}_2$へ移るものとする.以下同様に正の整数$n$について,行列$A^n$で表される移動によって点$\mathrm{X}_0$は点$\mathrm{X}_n$へ移るものとする.

(1)行列$A$は,$\alpha>0$と$\displaystyle 0<\theta<\frac{\pi}{2}$を使って$A=\alpha \left( \begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$と変形できる.$\alpha$と$\theta$の値を求めよ.
(2)$\triangle \mathrm{OX}_0 \mathrm{X}_1$の面積$S_1$を求めよ.
(3)四角形$\mathrm{OX}_0 \mathrm{X}_1 \mathrm{X}_2$の面積$S_2$を求めよ.
(4)$1 \leqq n<12$とする.線分$\mathrm{OX}_0$,$\mathrm{X}_0 \mathrm{X}_1$,$\cdots$,$\mathrm{X}_{n-1} \mathrm{X}_n$,$\mathrm{X}_n \mathrm{O}$で囲まれる部分の面積$S_n$を$n$を使って表せ.
早稲田大学 私立 早稲田大学 2010年 第4問
$xyz$空間において,2点P$(1,\ 0,\ 1)$,Q$(-1,\ 1,\ 0)$を考える.線分PQを$x$軸の周りに1回転して得られる曲面を$S$とする.以下の問に答えよ.

(1)曲面$S$と,2つの平面$x=1$および$x=-1$で囲まれる立体の体積を求めよ.
(2)(1)の立体の平面$y=0$による切り口を,平面$y=0$上において図示せよ.
(3)定積分$\displaystyle \int_0^1 \sqrt{t^2+1}\, dt$の値を$\displaystyle t=\frac{e^s-e^{-s}}{2}$と置換することによって求めよ.
これを用いて,(2)の切り口の面積を求めよ.
早稲田大学 私立 早稲田大学 2010年 第3問
座標平面上で,C$_1$,C$_2$,C$_3$を,それぞれ,中心が$(0,\ 0),\ (3,\ 0),\ (5,\ 0)$,半径が$2,\ 1,\ 1$である円周とする.点Pは点$(2,\ 0)$を出発点とし,円周C$_1$上を反時計回りに等速で$2a$秒で一周する.点Qは点$(4,\ 0)$を出発点とし,先ず円周C$_2$上を反時計回りに等速で$a$秒で一周し,続いて円周C$_3$上を時計回りに等速で$a$秒で一周する.\\
\quad 点P,Qが同時に出発するとき,線分PQの長さの最大値と最小値を求めよ.
\quad ただし,$a$は正の定数である.
早稲田大学 私立 早稲田大学 2010年 第5問
四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:1$に内分する点を$\mathrm{Q}$,線分$\mathrm{BC}$を$4:1$に内分する点を$\mathrm{R}$とする.この四面体を$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面で切り,この平面が線分$\mathrm{AC}$と交わる点を$\mathrm{S}$とするとき,線分の長さの比$\mathrm{AS}:\mathrm{SC}$を求めることを考えよう.\\
点$\mathrm{S}$は$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面上にあるから,定数$s,\ t,\ u$を用いて,
\[ \overrightarrow{\mathrm{OS}} = s \, \overrightarrow{\mathrm{OP}} + t \, \overrightarrow{\mathrm{OQ}} +u \, \overrightarrow{\mathrm{OR}} \quad (s+t+u=1) \]
と書くことができる.ここで,$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[ス]\overrightarrow{\mathrm{OB}}+[セ]\overrightarrow{\mathrm{OC}}}{[ソ]}$であるから,$\overrightarrow{\mathrm{OS}}$は$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$それぞれの定数倍の和として表すことができる.そこで,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$の係数をそれぞれ定数$s^{\prime},\ t^{\prime},\ u^{\prime}$とおくことにより
\[ \overrightarrow{\mathrm{OS}} = s^{\prime}\overrightarrow{\mathrm{OA}} + t^{\prime}\overrightarrow{\mathrm{OB}} +u^{\prime}\overrightarrow{\mathrm{OC}} \quad (18s^{\prime}+16t^{\prime}+11u^{\prime}=[タ]) \]
と書くことができる.ところが,点$\mathrm{S}$は線分$\mathrm{AC}$上にあることから,$s^{\prime},\ t^{\prime}\ u^{\prime}$を求めることができ,$\mathrm{AS}:\mathrm{SC}=[チ]:[ツ]$であることがわかる.
ただし,$[ソ]$,$[チ]$,$[ツ]$はできる限り小さい自然数で答えること.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2010年 第5問
半径1の円Oの中心Oを通る直線上に$\text{OA}=2$となるように点Aを定める.点Aを通り,円Oと2点B,Cで交わるような直線を引き,$\text{AB}=\text{BC}$となるようにしたい.2直線のなす角$\theta = \angle \text{OAB} \ (0^\circ <\theta<30^\circ)$をどのように定めればよいか.次の手順で検討せよ.

(1)線分BCの中点をMとして,線分AMの長さを$\cos \theta$を用いて表せ.
(2)同様に,線分BMの長さを$\cos \theta$を用いて表せ.
(3)$\text{AB}=\text{BC}$のとき$\text{AM}= 3\text{BM}$である.これを利用して$\cos \theta$の値を求めよ.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。