タグ「総数」の検索結果

8ページ目:全91問中71問~80問を表示)
宮城教育大学 国立 宮城教育大学 2011年 第3問
$n$を1以上の整数とする.$k=1,\ 2,\ \cdots,\ n,\ n+1$に対して,$xy$平面上で,点$(0,\ k)$を通り$x$軸に平行な直線を$\ell_k$とし,点$(k,\ 0)$を通り$y$軸に平行な直線を$m_k$とする.このとき,次の問いに答えよ.

(1)直線
\[ \ell_1,\ \ell_2,\ \cdots,\ \ell_n,\ \ell_{n+1} \]
から相異なる2本を選び,直線
\[ m_1,\ m_2,\ \cdots,\ m_n,\ m_{n+1} \]
から相異なる2本を選ぶと長方形が1つできる.こうしてできる長方形の総数を求めよ.ただし,合同であっても位置が違う長方形は異なるものとする.
(2)(1)で考えた長方形のうちから1つとるとき,それが正方形である確率を求めよ.
早稲田大学 私立 早稲田大学 2011年 第7問
座標平面上の点$(x,y)$の両座標とも整数のとき,その点を格子点という.本問では,「領域内」とはその領域の内部および境界線を含むものとする.

(1)不等式$|x|+2 |y| \leqq 4$の表す領域を$D$とする.領域$D$内に格子点は$[ノ]$個ある.
(2)$n$を自然数として,不等式$|x|+2 |y| \leqq 2n$の表す領域を$F$とする.領域$F$内の格子点の総数は
$\left( [ハ]n^2+[ヒ]n+[フ] \right)$個である.
早稲田大学 私立 早稲田大学 2011年 第1問
次の$[ ]$にあてはまる数または数式を解答用紙の所定欄に記入せよ.

(1)平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が点$\mathrm{O}$を中心とする半径$1$の円周上にあり,
\[ 3 \overrightarrow{\mathrm{OA}}+7 \overrightarrow{\mathrm{OB}}+5 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
を満たしている.このとき線分$\mathrm{AB}$の長さは[ア]である.
(2)$xy$平面上の曲線$y=e^x$と$y$軸および直線$y=e$で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積は[イ]である.
(3)碁石を$n$個一列に並べる並べ方のうち,黒石が先頭で白石どうしは隣り合わないような並べ方の総数を$a_n$とする.ここで,$a_1=1$,$a_2=2$である.
(4)立方体の各辺の中点は全部で$12$個ある.頂点がすべてこれら$12$個の点のうちのどれかであるような正多角形は全部で[エ]個ある.
西南学院大学 私立 西南学院大学 2011年 第2問
次の問に答えよ.

(1)下図のように,正方形の各辺を$6$等分し,各辺に平行線を引く.これらの平行線によって作られる正方形でない長方形の総数は$[キクケ]$個である.
(図は省略)
(2)円周を$10$等分する$10$個の点がある.これらのうちの$3$個の点を頂点とする三角形を考える.直角三角形は全部で$[コサ]$個あり,また鈍角三角形は全部で$[シス]$個ある.
明治大学 私立 明治大学 2011年 第3問
自然数$n,\ k$について,$xy$平面上で$0 \leqq y \leqq x$と$y \leqq 2n+k-x$で定まる領域を$C_k$とする.ある整数$a,\ b$に対して,$(a,\ b)$,$(a+k,\ b)$,$(a,\ b+k)$,$(a+k,\ b+k)$を頂点にもつ正方形を$1$辺が$k$の格子点の正方形と呼ぶ事にする.$C_k$に入る格子点の正方形を考える($C_k$の境界も含める).このとき,次の問いに答えよ.

(1)$n=4$のとき,$C_k$内に$1$辺が$k$の格子点の正方形が存在するための,最大の$k$をもとめよ.
(2)$1$辺が$k$の格子点の正方形が,$C_k$内に存在するための$k$の条件を,$n$であらわせ.
(3)$C_k$内にある$1$辺が$k$の格子点の正方形の総数を$a_k$とするとき,$a_k$を$n$と$k$の式であらわせ.
(4)$a_1+a_2+\cdots +a_n$をもとめよ.
中央大学 私立 中央大学 2011年 第2問
対数関数
\[ f(x)=\log_2 x,\quad g(x)=\log_{\frac{1}{4}} x \]
に対し,$3$つの不等式
\[ x \geqq 1,\quad y \leqq f(x),\quad y \geqq g(x) \]
によって定められる$xy$平面上の領域を$D$とする.また,$xy$平面上の点$\mathrm{P}(x,\ y)$で$x,\ y$がともに整数であるものを``格子点''と呼ぶ.このとき,以下の設問に答えよ.

(1)領域$D$を図示せよ.
(2)「$D$に属する格子点$\mathrm{P}(x,\ y)$で$x \leqq 8$であるもの」の総数を求めよ.
(3)「$D$に属する格子点$\mathrm{P}(x,\ y)$で$x \leqq 33,\ y \geqq 1$であるもの」の総数を求めよ.
中央大学 私立 中央大学 2011年 第1問
以下の設問に答えよ.

(1)整数$x_1,\ \cdots,\ x_4$に対して,
\[ \left\{ \begin{array}{l}
x_1+x_2+x_3+x_4=14 \\
x_k \geqq 2 (k=1,\ \cdots, 4)
\end{array} \right. \]
となる組$(x_1,\ \cdots, x_4)$の総数を求めよ.
(2)整数$y_1,\ \cdots,\ y_5$に対して,
\[ \left\{ \begin{array}{l}
y_1+y_2+y_3+y_4+y_5=7 \\
y_k \geqq 0 (k=1,\ \cdots, 5)
\end{array} \right. \]
となる組$(y_1,\ \cdots, y_5)$の総数を求めよ.
兵庫県立大学 公立 兵庫県立大学 2011年 第3問
$2$つの野球チーム$\mathrm{A}$と$\mathrm{B}$が優勝を争うシリーズ戦が行われる.先に$n$試合勝った方が優勝することにする.ただし,各試合において引き分けはないものとし,$\mathrm{A}$と$\mathrm{B}$が相手に勝つ確率はそれぞれ$p,\ q (p+q=1,\ p>0,\ q>0)$とする.このとき,以下の問に答えなさい.

(1)$n=3$のとき,$\mathrm{A}$が優勝する場合の勝敗パターンを試合総数の少ない順にすべて書きなさい.例えば,シリーズ各試合の勝ちチームが順に$\mathrm{A}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{A}$であったとき,この場合の勝敗パターンを$\mathrm{AABA}$で表すことにする.
(2)$n=3$のとき,$\mathrm{A}$が優勝する確率を求めなさい.
(3)$n=4$のとき,$\mathrm{A}$が優勝する場合の勝敗パターンの総数と,$\mathrm{A}$が優勝する確率とを求めなさい.
福岡女子大学 公立 福岡女子大学 2011年 第3問
箱の中に赤いボールが$m$個,白いボールが$n$個入っており,各ボールには異なる名前が付けられている.次の問に答えなさい.

(1)整数$l$を$1 \leqq l \leqq m+n$とする.箱から異なる$l$個のボールを取り出して並べる順列の総数を求めなさい.
(2)整数$k$を$1 \leqq k \leqq l$とする.$(1)$の順列のうち,先頭からかぞえて$k$番目に赤いボールが来る順列の総数を求めなさい.
(3)$l$人が順番にこの箱からボールを$1$つずつ取り出し,取り出したボールは元に戻さないとする.$k$番目の人が赤いボールを取り出す確率を求めなさい.
神戸大学 国立 神戸大学 2010年 第4問
$N$を自然数とする.赤いカード2枚と白いカード$N$枚が入っている袋から無作為にカードを1枚ずつ取り出して並べていくゲームをする.2枚目の赤いカードが取り出された時点でゲームは終了する.赤いカードが最初に取り出されるまでに取り出された白いカードの枚数を$X$とし,ゲーム終了時までに取り出された白いカードの総数を$Y$とする.このとき,以下の問に答えよ.

(1)$n=0,\ 1,\ \cdots,\ N$に対して,$X=n$となる確率$p_n$を求めよ.
(2)$X$の期待値を求めよ.
(3)$n=0,\ 1,\ \cdots,\ N$に対して,$Y=n$となる確率$q_n$を求めよ.
スポンサーリンク

「総数」とは・・・

 まだこのタグの説明は執筆されていません。