タグ「総数」の検索結果

7ページ目:全91問中61問~70問を表示)
成城大学 私立 成城大学 2012年 第3問
ある日に情報$\mathrm{I}$が伝わると,新たにその情報を知った人のうち

$10 \, \%$が翌日に$2$人ずつに直接会って伝え
$20 \, \%$が翌日に$4$人ずつにメールで伝え
$10 \, \%$が翌日にウェブサイトに書き込みをしてそれぞれ$20$人ずつが読む

とする.

情報$\mathrm{I}$を知った人は翌日にのみ他の人に伝え,同じ人に重複して伝わることはなく,その変形や誤りは起こらないと仮定する.$1$日目に情報$\mathrm{I}$が$100$人に伝わるとして,以下の問いに答えよ.

(1)$3$日目に初めて情報$\mathrm{I}$を知る人の数を求めよ.
(2)$n$日目までに情報$\mathrm{I}$を知る人の総数を求めよ.
(3)情報$\mathrm{I}$を知る人の総数が$10$万人を初めて超えるのは何日目か.
北海道大学 国立 北海道大学 2011年 第4問
$n$を$2$以上の自然数,$q$と$r$を自然数とする.$1$から$nq$までの番号がついた$nq$個の白玉,$1$から$nr$までの番号がついた$nr$個の赤玉を用意する.これら白玉と赤玉を,$1$番から$n$番まで番号づけられた$n$個の箱それぞれに,小さい番号から順に白玉は$q$個ずつ,赤玉は$r$個ずつ配分しておく.たとえば,$1$番目の箱には番号$1$から$q$の白玉と番号$1$から$r$までの赤玉が入っている.これら$n(q+r)$個の玉を$n$個の箱に以下のように再配分する.$1$番の箱から$1$個の玉を取り出して$2$番の箱に移し,次に$2$番の箱から$1$個の玉を取り出して$3$番の箱に移す.同様の操作を順次繰り返し最後に$n$番の箱に$1$個の玉を移して終了する.このようにして実現され得る再配分の総数を$s_n$とし,$n$番の箱の白玉が$q+1$個であるような再配分の総数を$a_n$とする.

(1)$s_2$を求めよ.
(2)$s_3$と$a_3$を求めよ.
(3)$s_4$と$a_4$を求めよ.
北海道大学 国立 北海道大学 2011年 第4問
$n$を2以上の自然数,$q$と$r$を自然数とする.1から$nq$までの番号がついた$nq$個の白玉,1から$nr$までの番号がついた$nr$個の赤玉を用意する.これら白玉と赤玉を,1番から$n$番まで番号づけられた$n$個の箱それぞれに,小さい番号から順に白玉は$q$個ずつ,赤玉は$r$個ずつ配分しておく.たとえば,1番目の箱には番号1から$q$の白玉と番号1から$r$までの赤玉が入っている.これら$n(q+r)$個の玉を$n$個の箱に以下のように再配分する.1番の箱から1個の玉を取り出して2番の箱に移し,次に2番の箱から1個の玉を取り出して3番の箱に移す.同様の操作を順次繰り返し最後に$n$番の箱に1個の玉を移して終了する.このようにして実現され得る再配分の総数を$s_n$とし,$n$番の箱の白玉が$q+1$個であるような再配分の総数を$a_n$とする.

(1)$a_3$と$a_3$を求めよ.
(2)$s_n$を求めよ.
(3)$a_{n+1}-a_n$を求めよ.
(4)$a_n$を求めよ.
千葉大学 国立 千葉大学 2011年 第8問
$n$段の階段を上るのに,一歩で1段,2段,または3段を上ることができるとする.この階段の上り方の総数を$a_n$とおく.たとえば,$a_1 = 1,\ a_2 = 2,\ a_3 = 4$である.

(1)$a_4,\ a_5$の値を求めよ.
(2)$a_n,\ a_{n+1},\ a_{n+2},\ a_{n+3} \ (n \geqq 1)$の間に成り立つ関係式を求めよ.
(3)$a_{10}$の値を求めよ.
東京大学 国立 東京大学 2011年 第5問
$p,\ q$を2つの正の整数とする.整数$a,\ b,\ c$で条件
\[ -q \leqq b \leqq 0 \leqq a \leqq p,\quad b \leqq c \leqq a \]
を満たすものを考え,このような$a,\ b,\ c$を$[a,\ b\ ;\ c]$の形に並べたものを$(p,\ q)$パターンと呼ぶ.各$(p,\ q)$パターン$[a,\ b\ ;\ c]$に対して
\[ w([a,\ b\ ;\ c]) = p-q-(a+b) \]
とおく.

(1)$(p,\ q)$パターンのうち,$w([a,\ b\ ;\ c])=-q$となるものの個数を求めよ.また,$w([a,\ b\ ;\ c])=p$となる$(p,\ q)$パターンの個数を求めよ.\\
以下$p=q$の場合を考える.
(2)$s$を整数とする.$(p,\ p)$パターンで$w([a,\ b\ ;\ c])=-p+s$となるものの個数を求めよ.
(3)$(p,\ p)$パターンの総数を求めよ.
山口大学 国立 山口大学 2011年 第4問
図のように東西に6本,南北に10本の道がある.東西の道と南北の道の出会う地点を交差点とよび,隣どうしの交差点を結ぶ道を区間ということにする.$\mathrm{A}$地点から$\mathrm{B}$地点に進むとき,次の問いに答えなさい.ただし,どの交差点においても,東西および北のいずれかに進むことはできるが,南に進むことはできないとする.また,後戻りもできないとする.図の中の太線は道順の例を示したものである.

(1)$\mathrm{A}$地点から$\mathrm{B}$地点へ行く道順の総数を求めなさい.
(2)$\mathrm{C}$地点を通って,$\mathrm{A}$地点から$\mathrm{B}$地点へ行く道順の総数を求めなさい.
(3)$\mathrm{A}$地点から$\mathrm{B}$地点まで16区間で行く道順の総数を求めなさい.
(図は省略)
山口大学 国立 山口大学 2011年 第2問
座標平面上の自然数を成分とする点$(m,\ n)$に,有理数$\displaystyle \frac{n}{m}$を対応させる.下図のように,点$(1,\ 1)$から矢印の順番に従って,対応する有理数を並べ,次のような数列をつくる.\\
$\displaystyle \frac{1}{1},\ \frac{1}{2},\ \frac{2}{2},\ \frac{2}{1},\ \frac{1}{3},\ \frac{2}{3},\ \frac{3}{3},\ \frac{3}{2},\ \frac{3}{1},\ \frac{1}{4},\ \frac{2}{4},\ \frac{3}{4},\ \frac{4}{4},\ \frac{4}{3},\ \frac{4}{2},\ \frac{4}{1},\ \cdots$\\
このとき,次の問いに答えなさい.

(1)有理数$\displaystyle \frac{11}{8}$が初めて現れるのは第何項かを求めなさい.
(2)第160項を求めなさい.
(3)第1000項までに,値が2となる項の総数を求めなさい.
(図は省略)
山口大学 国立 山口大学 2011年 第3問
1から6までの数字が1つずつ書かれた6枚のカードがある.6枚のカードの中から3枚を取り出し,左から一列に並べる.並べたカードの数字を左から順に百の位,十の位,一の位とする3桁の整数を$M$とし,また右から順に百の位,十の位,一の位とする3桁の整数を$N$とする.このとき,次の問いに答えなさい.

(1)$M+N$が3の倍数となるカードの並べ方の総数を求めなさい.
(2)$|M-N|<200$を満たすカードの並べ方の総数を求めなさい.
岐阜大学 国立 岐阜大学 2011年 第1問
下の図のように,$xy$平面上に,$x$軸に平行な道,$y$軸に平行な道,直線$y=-x$に平行な道があるものとする.これらの道を通って,原点Oから点A$(4,\ 4)$まで行くとき,以下の各場合に道順の総数を求めよ.
\setlength\unitlength{1truecm}

(図は省略)



(1)最短経路で行く場合.
(2)点B$(2,\ 2.5)$を通らずに,最短経路で行く場合.
(3)点C$(-1,\ 2)$を通り,道のりが$8+\sqrt{2}$になる場合.
(4)道のりが$8+\sqrt{2}$になる場合.
(5)$0 \leqq x \leqq 4,\ 0 \leqq y \leqq 4$の部分だけを通り,道のりが$8+\sqrt{2}$になる場合.
岐阜大学 国立 岐阜大学 2011年 第1問
下の図のように,$xy$平面上に,$x$軸に平行な道,$y$軸に平行な道,直線$y=-x$に平行な道があるものとする.これらの道を通って,原点Oから点A$(4,\ 4)$まで行くとき,以下の各場合に道順の総数を求めよ.
\setlength\unitlength{1truecm}

(図は省略)



(1)最短経路で行く場合.
(2)点B$(2,\ 2.5)$を通らずに,最短経路で行く場合.
(3)点C$(-1,\ 2)$を通り,道のりが$8+\sqrt{2}$になる場合.
(4)道のりが$8+\sqrt{2}$になる場合.
(5)$0 \leqq x \leqq 4,\ 0 \leqq y \leqq 4$の部分だけを通り,道のりが$8+\sqrt{2}$になる場合.
スポンサーリンク

「総数」とは・・・

 まだこのタグの説明は執筆されていません。