タグ「総数」の検索結果

4ページ目:全91問中31問~40問を表示)
鳥取大学 国立 鳥取大学 2014年 第4問
自然数$n$に対して,$1$から$2n$までのすべての自然数を次の条件(ア)および(イ)を満たすように並べた順列$[i_1,\ i_2,\ i_3,\ i_4,\ \cdots,\ i_{2n-1},\ i_{2n}]$の総数を$f(n)$とする.

(ア) $k=1,\ 2,\ \cdots,\ n$に対して$i_{2k-1}<i_{2k}$
(イ) $n \geqq 2$ならば$i_1<i_3<\cdots<i_{2n-1}$

たとえば$n=1$のとき条件(ア)を満たす順列は$[1,\ 2]$のみであるから$f(1)=1$となる.

(1)$f(2),\ f(3)$を求めよ.
(2)$n=2,\ 3,\ \cdots$とするとき,$f(n)$と$f(n-1)$の間の関係式を求めよ.
(3)$f(n)$を求めよ.
福井大学 国立 福井大学 2014年 第1問
総数$20$本のくじの中に,賞金$1000$円の$1$等が$1$本,賞金$500$円の$2$等が$2$本,賞金$100$円の$3$等が$3$本入っており,残りは全て賞金$0$円のはずれくじである.このくじを$2$本引くとき,次の問いに答えよ.

(1)$3$等が$1$本以上当たる確率を求めよ.
(2)得られる賞金の総額が$1000$円になる確率を求めよ.
(3)得られる賞金の総額の期待値を求めよ.
(4)このくじを$1$本引くのに参加料を$x$円払う必要があるとする.このくじを$2$本引くとき,$x$がいくらまでならば,「くじを引くこと」が得になるか答えよ.ここで,得られる賞金の総額の期待値よりも参加料の方が少ないとき,得であると判断することにする.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
$n$を自然数とする.赤玉が$n$個,青玉が$2$個,白玉が$1$個入った袋がある.

(1)袋から同時に$2$個の玉を取り出す.$n=[$31$][$32$]$のとき,取り出された$2$個の玉に含まれる赤玉の個数の期待値は$\displaystyle \frac{7}{4}$である.
(2)袋から玉を$1$個取り出し,色を調べてから元に戻すことを$10$回くり返す.

(i) $n=5$のとき,青玉が$9$回以上出る確率は$\displaystyle \frac{[$33$][$34$]}{4^{10}}$である.
(ii) 調べた色を順に記録してできる色の列のうちで
「赤が$8$個以下,または$3$番目が青か白」
であるものの総数は$3^{10}-[$35$][$36$]$である.
愛知工業大学 私立 愛知工業大学 2014年 第1問
次の$[ ]$を適当に補え.

(1)$ab(a+b)-2bc(b-c)+ca(2c-a)-3abc$を因数分解すると$[ア]$となる.
(2)自然数$n$をいくつかの$1$と$2$の和で表すときの表し方の総数を$a(n)$とする.ただし,和の順序を変えた表し方は同じ表し方とする.例えば,$4=2+2$,$4=2+1+1$,$4=1+1+1+1$であるから,$a(4)=3$である.このとき,$a(9)=[イ]$,$a(2014)=[ウ]$である.
(3)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が$\displaystyle S_n=\frac{n}{n+1}$であるとき,$a_n=[エ]$,$\displaystyle \sum_{k=1}^n \frac{1}{a_k}=[オ]$である.
(4)$0 \leqq \theta \leqq \pi$とする.$\sin \theta+\cos \theta=t$とすると,$t$のとりうる値の範囲は$[カ] \leqq t \leqq [キ]$であり,$\sin \theta+\cos \theta+2 \sin 2\theta$の最大値は$[ク]$,最小値は$[ケ]$である.
(5)$\log_2 64=[コ]$である.また,$x$を$1$でない正の数とするとき,$\log_4 x^2-\log_x 64 \leqq 1$をみたす$x$の範囲は$[サ]$である.
(6)$f(x)=\sin 2x$とするとき,$f^\prime(x)=[シ]$である.また,$\displaystyle \int_0^{\frac{\pi}{6}} \sin^2 2x \cos 2x \, dx=[ス]$である.
中京大学 私立 中京大学 2014年 第2問
$\mathrm{Y}$,$\mathrm{A}$,$\mathrm{G}$,$\mathrm{O}$,$\mathrm{T}$,$\mathrm{O}$,$\mathrm{T}$,$\mathrm{O}$,$\mathrm{Y}$,$\mathrm{O}$,$\mathrm{T}$,$\mathrm{A}$の$12$文字全部を横$1$列に並べて順列をつくるとき,次の各問に答えよ.

(1)順列の総数を求めよ.
(2)$\mathrm{GO}$という並びを含む順列の総数を求めよ.
広島修道大学 私立 広島修道大学 2014年 第1問
次の問に答えよ.

(1)方程式$\displaystyle |4-x|+|\displaystyle\frac{1|{2}x-3}=3$を解け.

(2)$\displaystyle \frac{1}{\sqrt{5}},\ {25}^{-\frac{1}{3}},\ \frac{1}{\sqrt[5]{125}}$を小さい順に並べよ.

(3)$\mathrm{SHUDODAIGAKU}$の$12$文字から$4$文字を選んで$1$列に並べる順列の総数を求めよ.
昭和大学 私立 昭和大学 2014年 第5問
赤,青,黄色$3$色のカードがそれぞれ$5$枚ずつあり,各色のカードに$1$から$5$までの数字が$1$つずつ書かれている.これら$15$枚のカードから無作為に$3$枚を同時に取り出すとき,以下の各問いに答えよ.

(1)取り出し方の総数を求めよ.ただし,カードの色も数字も区別する.
(2)$3$枚とも同じ数字となる確率を求めよ.
(3)$3$枚のカードのうち,青いカードが$1$枚だけとなる確率を求めよ.
北里大学 私立 北里大学 2014年 第1問
次の$[ ]$にあてはまる答を求めよ.

(1)$0<x<1$とする.$\displaystyle x^2+\frac{1}{x^2}=6$のとき,$\displaystyle x+\frac{1}{x}=[ア]$,$x^3=[イ]$である.
(2)$a,\ b$は正の定数とする.$2$次方程式$x^2+ax+b=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2+(a^2-4a)x+a-b=0$が$2$つの数$\alpha+3$,$\beta+3$を解とするとき,$a,\ b$の値は$a=[ウ]$,$b=[エ]$である.
(3)$0 \leqq \theta<2\pi$のとき,不等式$\sin \theta-\sqrt{3} \cos \theta \geqq 1$が成り立つ$\theta$の範囲は$[オ]$である.$[オ]$の範囲で$2 \cos 2\theta+3 \sin \theta$は最大値$[カ]$,最小値$[キ]$をとる.
(4)正十六角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_{16}$の$16$個の頂点のうちの$3$個を頂点とする三角形の総数は$[ク]$である.これらの三角形のうち,直角三角形の個数は$[ケ]$個であり,鈍角三角形の個数は$[コ]$個である.
北里大学 私立 北里大学 2014年 第1問
つぎの$[ ]$にあてはまる答を記せ.

(1)空間に$4$点$\mathrm{A}(5,\ 1,\ 3)$,$\mathrm{B}(4,\ 4,\ 3)$,$\mathrm{C}(2,\ 3,\ 5)$,$\mathrm{D}(4,\ 1,\ 3)$がある.

(i) $\overrightarrow{\mathrm{DA}}$と$\overrightarrow{\mathrm{DB}}$のなす角を$\theta$とおくとき,$\theta=[ア]$である.ただし,$0^\circ \leqq \theta \leqq {180}^\circ$とする.
(ii) 四面体$\mathrm{ABCD}$の体積は$[イ]$である.

(2)$a$を実数とする.$x$についての$2$次方程式$x^2-2x \log_2 \{(a+1)(a-5)\}+4=0$の解の$1$つが$2$であるとき,$a$の値は$[ウ]$である.また,この$2$次方程式が実数解をもたないような$a$の値の範囲は$[エ]$である.
(3)不等式$\displaystyle x^2+2x \leqq y \leqq 2x+2 \leqq \frac{4}{3}y$の表す領域の面積は$[オ]$である.また,この領域上の点$(x,\ y)$のうち,$5x-3y$が最小となるような点の座標は$[カ]$である.
(4)$n$は正の整数とする.階段を$1$度に$1$段,$2$段または$3$段登る.このとき,$n$段からなる階段の登り方の総数を$a_n$とする.例えば,$a_1=1$であり,$a_2=2$である.

(i) $a_3$の値は$[キ]$である.
(ii) $a_4$の値は$[ク]$である.
(iii) $a_{10}$の値は$[ケ]$である.

(5)$\displaystyle 0<t<\frac{\pi}{2}$とする.曲線$y=\sin x$上の点$\displaystyle \mathrm{P} \left( t+\frac{\pi}{2},\ \sin \left( t+\frac{\pi}{2} \right) \right)$における法線を$\ell$とおく.直線$\displaystyle x=\frac{\pi}{2}$を$m$とおき,法線$\ell$と直線$m$の交点を$\mathrm{Q}$とする.

(i) $\displaystyle t=\frac{\pi}{3}$のとき,点$\mathrm{Q}$の座標は$[コ]$である.
(ii) 曲線$y=\sin x$と法線$\ell$および直線$m$で囲まれた部分の面積を$S(t)$とするとき,極限$\displaystyle \lim_{t \to +0} \frac{S(t)}{t}$の値は$[サ]$である.
桜美林大学 私立 桜美林大学 2014年 第1問
次の問いに答えよ.

(1)$2$次関数$y=ax^2+bx+4$のグラフを原点に関して対称に移動し,さらに$y$軸の正方向に$c$だけ平行移動すると,$x$軸とで$(-1,\ 0)$で接し,点$\displaystyle \left( \frac{1}{2},\ 9 \right)$を通る放物線となった.このとき,$a=[ア]$,$b=[イ]$,$c=[ウ]$である.
(2)$6$個の文字$\mathrm{O}$,$\mathrm{O}$,$\mathrm{B}$,$\mathrm{B}$,$\mathrm{R}$,$\mathrm{N}$について,$6$個すべてを使ってできる順列の総数は$[エ][オ][カ]$個であり,$6$個のうち$4$個をとってできる順列の総数は,$[キ][ク][ケ]$個である.
(3)$\mathrm{O}$を原点とする$xy$座標平面上で,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 3)$とする.三角形$\mathrm{OAB}$の外接円$C_1$の半径は$\displaystyle \frac{[コ]}{[サ]}$であり,三角形$\mathrm{OAB}$の内接円$C_2$の半径は$[シ]$である.
(4)$x$は実数とし,$t=2^x+2^{-x}$とおくと,$t$の最小値は$[ス]$である.また,$t^2-6t+8=0$を満たす異なる実数$x$の個数は$[セ]$個である.
(5)$x$の$2$次方程式$3x^2+(1+3i)x-2-2i=0$は実数解と虚数解をもつという.このとき,実数解は$\displaystyle \frac{[ソ]}{[タ]}$であり,虚数解は$[チ]+[ツ]i$である.ただし,$i$は虚数単位である.
スポンサーリンク

「総数」とは・・・

 まだこのタグの説明は執筆されていません。