タグ「総数」の検索結果

3ページ目:全91問中21問~30問を表示)
大阪府立大学 公立 大阪府立大学 2015年 第2問
異なる$n$個のものから異なる$r$個を取り出して並べる順列の総数
\[ \perm{n}{r}=n(n-1)(n-2) \cdots (n-r+1) \qquad \text{(ただし$n \geqq r \geqq 1$)} \]
に関して以下の問いに答えよ.

(1)$k>r$ならば$\displaystyle \perm{k}{r}=\frac{1}{r+1}(\perm{k+1}{r+1}-\perm{k}{r+1})$が成り立つことを示せ.
(2)$\displaystyle \perm{r}{r}+\perm{r+1}{r}+\perm{r+2}{r}+\cdots +\perm{n+r-1}{r}=\frac{\perm{n+r}{r+1}}{r+1}$が成り立つことを示せ.
(3)次の等式がすべての自然数$k$に対して成り立つような定数$A,\ B,\ C$を求めよ.
\[ k^4=\perm{k+3}{4}+A \times \perm{k+2}{3}+B \times \perm{k+1}{2}+C \times \perm{k}{1} \]
(4)$\displaystyle \frac{1^4+2^4+3^4+\cdots +n^4}{1+2+3+\cdots +n}$を$n$の$3$次式で表せ.
横浜国立大学 国立 横浜国立大学 2014年 第4問
平面上に半径$1$と半径$2$の同心円$C_1$と$C_2$がある.自然数$n$に対して,$C_2$の周を$3n$等分する$3n$個の点がある.この$3n$個の点の中から異なる$3$点を選ぶとき,次の$(*)$をみたす選び方の総数を$a_k (k=0,\ 1,\ 2,\ 3)$とする.

$(*)$ 選んだ$3$点を頂点とする三角形の辺のうち,ちょうど$k$個が$C_1$の周と共有点をもつ.

次の問いに答えよ.

(1)$n=2$のとき,$a_0,\ a_1,\ a_2,\ a_3$を求めよ.
(2)$n \geqq 2$のとき,$a_0,\ a_1,\ a_2,\ a_3$を$n$の式で表せ.
埼玉大学 国立 埼玉大学 2014年 第1問
$p$を素数とする.以下の問いに答えよ.

(1)$1 \leqq r \leqq p-1$を満たす自然数$r$に対し,$\comb{p}{r}$は$p$で割り切れることを示せ.ただし,$\comb{p}{r}$は$p$個から$r$個とる組合せの総数を表すものとする.
(2)$1 \leqq s \leqq q-1$を満たす自然数の組$(q,\ s)$であって,$\comb{q}{s}$が$q$で割り切れないものを$1$組あげよ.
(3)自然数$m,\ n$に対し,$(m+n)^p-(m^p+n^p)$が$p$で割り切れることを示せ.
(4)自然数$n$に対し,$n^p-n$は$p$で割り切れることを,$n$に関する数学的帰納法を用いて証明せよ.
弘前大学 国立 弘前大学 2014年 第1問
次の問いに答えよ.

(1)$a+b+c+d=10$を満たす自然数$a,\ b,\ c,\ d$の組の総数を求めよ.
(2)$|a|+|b|+|c|+|d|=10$を満たし,どれも$0$とはならない整数$a,\ b,\ c,\ d$の組の総数を求めよ.
(3)$|a|+|b|+|c|+|d|=10$を満たす整数$a,\ b,\ c,\ d$の組の総数を求めよ.
富山大学 国立 富山大学 2014年 第2問
$p$を素数とするとき,次の問いに答えよ.

(1)自然数$k$が$1 \leqq k \leqq p-1$を満たすとき,$\comb{p}{k}$は$p$で割り切れることを示せ.ただし,$\comb{p}{k}$は$p$個のものから$k$個取った組合せの総数である.
(2)$n$を自然数とするとき,$n$に関する数学的帰納法を用いて,$n^p-n$は$p$で割り切れることを示せ.
(3)$n$が$p$の倍数でないとき,$n^{p-1}-1$は$p$で割り切れることを示せ.
佐賀大学 国立 佐賀大学 2014年 第3問
$10$個のアルファベットの大文字$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{H}$,$\mathrm{I}$,$\mathrm{O}$,$\mathrm{X}$を重複を許して並べてできる$5$文字の順列を$1$枚のカードに$1$つずつ書くとする.なお,文字$\mathrm{H}$,$\mathrm{I}$,$\mathrm{O}$,$\mathrm{X}$は上下を逆さまにしてもそれぞれ$\mathrm{H}$,$\mathrm{I}$,$\mathrm{O}$,$\mathrm{X}$と読めるので,これらの文字で書かれた$5$文字の順列はカードごと上下を逆さまにすると,$i=1,\ 2,\ 3,\ 4,\ 5$に対して$i$番目の文字がもとの$6-i$番目の文字に対応する$5$文字の順列が書かれたカードとして使えるとする.例えば,$\mathrm{HIOXX}$と書かれたカードは上下を逆さまにして,$\mathrm{XXOIH}$と書かれたカードとしても使える.しかし,$\mathrm{ABEIF}$と書かれたカードは上下を逆さまにすると$5$文字の順列を表すカードとしては使えない.このとき,次の問に答えよ.

(1)上下を逆さまにして読んでも同じ順列を表すカードの総数を求めよ.
(2)上下を逆さまにして読むと異なる順列を表すカードの総数を求めよ.
(3)上下を逆さまにすることにより$1$枚のカードを$2$度まで使うことを許すとする.すべての順列を書くためには,最小限で何枚のカードが必要か.
佐賀大学 国立 佐賀大学 2014年 第1問
$10$個のアルファベットの大文字$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{H}$,$\mathrm{I}$,$\mathrm{O}$,$\mathrm{X}$を重複を許して並べてできる$5$文字の順列を$1$枚のカードに$1$つずつ書くとする.なお,文字$\mathrm{H}$,$\mathrm{I}$,$\mathrm{O}$,$\mathrm{X}$は上下を逆さまにしてもそれぞれ$\mathrm{H}$,$\mathrm{I}$,$\mathrm{O}$,$\mathrm{X}$と読めるので,これらの文字で書かれた$5$文字の順列はカードごと上下を逆さまにすると,$i=1,\ 2,\ 3,\ 4,\ 5$に対して$i$番目の文字がもとの$6-i$番目の文字に対応する$5$文字の順列が書かれたカードとして使えるとする.例えば,$\mathrm{HIOXX}$と書かれたカードは上下を逆さまにして,$\mathrm{XXOIH}$と書かれたカードとしても使える.しかし,$\mathrm{ABEIF}$と書かれたカードは上下を逆さまにすると$5$文字の順列を表すカードとしては使えない.このとき,次の問に答えよ.

(1)上下を逆さまにして読んでも同じ順列を表すカードの総数を求めよ.
(2)上下を逆さまにして読むと異なる順列を表すカードの総数を求めよ.
(3)上下を逆さまにすることにより$1$枚のカードを$2$度まで使うことを許すとする.すべての順列を書くためには,最小限で何枚のカードが必要か.
山梨大学 国立 山梨大学 2014年 第1問
次の問いに答えよ.

(1)標高$376 \, \mathrm{m}$の地点から富士山に登りはじめた.一般に,$2$地点の大気圧の比はその$2$地点の高度差の指数関数である.この日の大気圧は,高度が$850 \, \mathrm{m}$上昇するごとに$10 \, \%$ずつ減少していた.登りはじめた地点の大気圧は$990 \, \mathrm{hPa}$であった.この日の富士山の山頂$3776 \, \mathrm{m}$での大気圧は何$\mathrm{hPa}$か.答は小数第$1$位を四捨五入し,整数で答えよ.
(2)ある店において,原価が$200$円,定価が$350$円の商品$\mathrm{A}$の$1$日の売り上げ総数を$N$とする.$\mathrm{A}$の売り値が定価通りのときには$N=35$であり,定価から原価まで売り値を$10$円下げるごとに,$N$は$5$ずつ増えることがわかっている.また,売り値は定価を超えず,原価も下回らないとする.この店での$1$日の$\mathrm{A}$の売り上げ全体の利益を最大にする売り値と,そのときの$N$を求めよ.
(3)$\log_23,\ \log_47,\ \log_828$を小さい順に並べよ.
(4)空間の$3$点$\mathrm{A}(1,\ 1,\ 1)$,$\mathrm{B}(0,\ 2,\ 3)$,$\mathrm{C}(-1,\ 0,\ 0)$の定める平面を$\alpha$とする.点$\mathrm{P}(2,\ 3,\ z)$が平面$\alpha$上にあるとき,$z$の値を求めよ.
徳島大学 国立 徳島大学 2014年 第3問
$n$枚のカードに$1$から$n$までの自然数がひとつずつ書かれている.異なるカードには異なる数が書かれている.これら$n$枚のカードを横一列に並べて,左端から$i$番目($1 \leqq i \leqq n$)のカードに書かれた数を$a_i$とする.

(1)$n=5$のとき,$a_1<a_2<a_3$かつ$a_3>a_4>a_5$を満たすカードの並べ方の総数を求めよ.
(2)$n \geqq 3$とする.次の条件$(ⅰ)$,$(ⅱ)$を満たすカードの並べ方の総数を$n$の式で表せ.ただし,$(ⅱ)$では,$k=2$のとき$a_1<a_2<\cdots<a_k$は$a_1<a_2$を表し,$k=n-1$のとき$a_k>a_{k+1}>\cdots>a_n$は$a_{n-1}>a_n$を表す.

(i) $1<k<n$
(ii) $a_1<a_2<\cdots<a_k$かつ$a_k>a_{k+1}>\cdots>a_n$

(3)$n \geqq 4$とする.次の条件$(ⅰ)$,$(ⅱ)$,$(ⅲ)$を満たすカードの並べ方の総数を$n$の式で表せ.ただし,$(ⅲ)$のそれぞれの不等式は$(2)$と同様に,$p=2$のとき$a_1>a_2$を表し,$q=p+1$のとき$a_p<a_{p+1}$を表し,$q=n-1$のとき$a_{n-1}>a_n$を表す.

(i) $1<p<q<n$
(ii) $a_1=n$かつ$a_p=1$
(iii) $a_1>a_2>\cdots>a_p$かつ$a_p<a_{p+1}<\cdots<a_q$かつ$a_q>a_{q+1}>\cdots>a_n$
奈良教育大学 国立 奈良教育大学 2014年 第2問
$7$人の生徒$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$を$3$人,$2$人,$2$人の$3$組に分ける.

(1)分け方の総数を求めよ.
(2)次の問いに答えよ.

(i) $\mathrm{A}$と$\mathrm{B}$が$3$人の組で同じ組になる分け方の総数を求めよ.
(ii) $\mathrm{A}$と$\mathrm{B}$が同じ組になる分け方の総数を求めよ.
スポンサーリンク

「総数」とは・・・

 まだこのタグの説明は執筆されていません。