タグ「絶対値」の検索結果

73ページ目:全755問中721問~730問を表示)
奈良教育大学 国立 奈良教育大学 2010年 第1問
関数$\displaystyle f(x)=\frac{x^2+2x+1}{|x|}$について,次の問いに答えよ.

(1)$x>0$のとき,$y=f(x)$の極値と漸近線を求め,グラフの概形をかけ.
(2)$x<0$のとき,$y=f(x)$の極値と漸近線を求め,グラフの概形をかけ.
岐阜大学 国立 岐阜大学 2010年 第5問
$a$を正の実数とし,$b$を負の実数とする.$xy$平面上の直線$C_1:y=x$と放物線$C_2:y=ax^2+bx$を考える.$C_1$と$C_2$は2点で交わっており,$C_1$と$C_2$の囲む図形の面積を$S$とする.以下の問に答えよ.

(1)$a$を$S$と$b$を用いて表せ.
(2)$C_1$と$C_2$の交点の座標を$(p_1,\ q_1) ,\ (p_2,\ q_2) \ (\text{ここで}p_1<p_2)$とし,$L=p_2-p_1$とおく.$p_1 \leqq x \leqq p_2$における$ax^2+bx$の最小値の絶対値を$T$とする.$S$の値が一定になるように$a$と$b$を変化させたとき,$\displaystyle \frac{T-L}{L^3}$の最小値を$S$を用いて表せ.
山口大学 国立 山口大学 2010年 第2問
次の初項と漸化式で定まる数列$\{a_n\}$を考える.
\[ a_1=\frac{1}{2},\ a_{n+1}=e^{-a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
ここで,$e$は自然対数の底で,$1<e<3$である.このとき,次の問いに答えなさい.

(1)すべての自然数$n$について$\displaystyle \frac{1}{3}<a_n<1$が成り立つことを示しなさい.
(2)方程式$x=e^{-x}$はただ1つの実数解をもつことと,その解は$\displaystyle \frac{1}{3}$と1の間にあることを示しなさい.
(3)関数$f(x)=e^{-x}$に平均値の定理を用いることによって,次の不等式が成り立つことを示しなさい.
\begin{align}
\frac{1}{3} \text{と1との間の任意の実数}x_1,\ x_2 \text{について,} \nonumber \\
|f(x_2)-f(x_1)| \leqq e^{-\frac{1}{3}} |x_2-x_1| \nonumber
\end{align}
(4)数列$\{a_n\}$は,方程式$x=e^{-x}$の実数解に収束することを示しなさい.
茨城大学 国立 茨城大学 2010年 第2問
$p$を$0<p<1$を満たす有理数の定数とし,関数$f(x)$を$f(x)=|x|^p$と定める.以下の各問に答えよ.

(1)曲線$y=f(x)$の概形を描け.
(2)$a$を$0$でない実数の定数とするとき,点$(a,\ f(a))$における曲線$y=f(x)$の接線の方程式を求めよ.また,接線と$x$軸の交点の$x$座標を求めよ.
(3)数列$\{a_n\}$を次のように定める:$a_1=1$とし,$n \geqq 2$のとき$a_n$を点$(a_{n-1},\ f(a_{n-1}))$における曲線$y=f(x)$の接線と$x$軸との交点の$x$座標とする.このとき一般項$a_n$を$n$と$p$を用いて表せ.
(4)(3)で求めた数列$\{a_n\}$について,点$(a_n,\ f(a_n))$における曲線$y=f(x)$の接線と,$x$軸,および直線$x=a_n$とで囲まれた部分の面積を$T_n$とする.$T_n$を$n$と$p$を用いて表せ.
(5)(4)の$T_n \ (n=1,\ 2,\ 3,\ \cdots)$について,無限級数$T_1+T_2+T_3+\cdots$が収束する$p$の範囲を求めよ.また,収束するときの無限級数の値を求めよ.
東京農工大学 国立 東京農工大学 2010年 第4問
$xy$平面上に
\[ |ye^{2x|-6e^{x}-8} =-(e^x-2)(e^x-4) \]
で定まる曲線がある.この曲線によって囲まれる図形の面積$K$を求めよ.ただし,$e$は自然対数の底である.
滋賀医科大学 国立 滋賀医科大学 2010年 第1問
次の問いに答えよ.

(1)$y=|x^2-1|$のグラフを描け.
(2)$a,\ b$を実数とする.$x$についての方程式
\[ |x^2-1|-ax-b=0 \]
が異なる4つの実数解を持つような点$(a,\ b)$の範囲を図示せよ.
(3)(2)の方程式の解を$\alpha,\ \beta,\ \gamma,\ \delta$とするとき,$\delta-\gamma=\gamma-\beta=\beta-\alpha$が成り立つときの$a,\ b$を求めよ.
滋賀医科大学 国立 滋賀医科大学 2010年 第3問
次の問いに答えよ.

(1)$a$を実数の定数,$f(x)$をすべての点で微分可能な関数とする.このとき次の等式を示せ.
\[ f^\prime(x)+af(x)=e^{-ax}(e^{ax}f(x))^\prime \]
ただし,$^\prime$は$x$についての微分を表す.
(2)(1)の等式を利用して,次の式を満たす関数$f(x)$で,$f(0)=0$となるものを求めよ.
\[ f^\prime(x)+2f(x)=\cos x \]
(3)(2)で求めた関数$f(x)$に対して,数列$\displaystyle \left\{ |f(n \pi)| \right\} \ (n=1,\ 2,\ 3,\ \cdots)$の極限値
\[ \lim_{n \to \infty} |f(n \pi)| \]
を求めよ.
千葉大学 国立 千葉大学 2010年 第11問
$f(x)$は実数全体で定義された関数とする.実数$a$に関する条件$(\mathrm{P})$を考える.

$(\mathrm{P})$ 正の実数$r$を十分小さく選べば,$|x-a|<r$をみたすすべての実数$x$に対して$f(x) \leqq f(a)$が成り立つ.

このとき,以下の問いに答えよ.

(1)実数$a$が条件$(\mathrm{P})$をみたし,かつ,$f(x)$が$x=a$で微分可能ならば,$f^\prime(a)=0$であることを証明せよ.
(2)関数$f(x)$が
\[ f(x)=\left\{
\begin{array}{ll}
|x|-x & (x<1 \text{のとき}) \\
|x^2-6x+8| & (x \geqq 1 \text{のとき})
\end{array}
\right. \]
で定義されているとき,条件$(\mathrm{P})$をみたすような実数$a$全体の集合を決定せよ.
(3)一般に,実数全体で定義された関数$f(x)$に対し,次の命題は正しいか.正しければ証明し,正しくなければ反例を挙げよ.

(命題) すべての実数$a$が条件$(\mathrm{P})$をみたすならば,$f(x)$は定数関数である.
東京海洋大学 国立 東京海洋大学 2010年 第1問
$3$次関数$f(x)=x^3-3x+2$について,次の問に答えよ.

(1)$f(x)$の極値を求め,$y=f(x)$のグラフをかけ.
(2)曲線$y=|f(x)|$と直線$y=kx+6$とが異なる$4$点で交わるような実数$k$の値の範囲を求めよ.
東京海洋大学 国立 東京海洋大学 2010年 第4問
$\mathrm{O}$を原点とする座標平面上で曲線$C:y=x |x-k|$(ただし$k$は正の定数)と直線$\ell:y=mx$が原点以外に$2$点$\mathrm{P}(\alpha,\ m \alpha)$,$\mathrm{Q}(\beta,\ m \beta)$で交わっている.ただし$0<\alpha<\beta$とする.

(1)$m$の範囲を$k$で表せ.
(2)$C$と$\ell$で囲まれた$2$つの図形の面積の和$S$を$m$と$k$で表せ.
(3)$S$が最小となるときの$m$を$k$で表せ.
(4)$(3)$のとき,$\displaystyle \frac{\mathrm{OQ}}{\mathrm{OP}}=\sqrt{2}$であることを示せ.
スポンサーリンク

「絶対値」とは・・・

 まだこのタグの説明は執筆されていません。