タグ「絶対値」の検索結果

62ページ目:全755問中611問~620問を表示)
中央大学 私立 中央大学 2012年 第1問
次の各問いに答えよ.

(1)次の式を展開せよ.
\[ (x+1)(x-1)(2x+3)(3x-1) \]
(2)$m$は自然数である.$x$についての$2$次方程式
\[ x^2-2mx+6m-8=0 \]
が,実数解を持たないとき,$m$の値を求めよ.
(3)$0^\circ \leqq \theta \leqq 360^\circ$において,次の関数の最大値と最小値を求めよ.
\[ y=2 \sin^2 \theta+\cos \theta-2 \]
(4)次の定積分の値を求めよ.
\[ \int_1^2 (3x^2+4x+2) \, dx \]
(5)大小$2$つのさいころを投げ,出た目の数をそれぞれ$a,\ b$とするとき,$|a-b| \geqq 3$となる確率を求めよ.
(6)半径$r$の球の体積$\displaystyle V=\frac{4 \pi r^3}{3}$を,$r$で微分して,導関数$V^\prime$を求めよ.これは,半径$r$の球の何を表しているか.
中央大学 私立 中央大学 2012年 第2問
$2$次関数や$3$次関数$y=f(x)$から新しい関数$F(x)$を次のように作る.

実数$x$に対して,$f(\alpha)=f(x)$を満たす最大の$\alpha$をとり
\[ F(x)=\alpha-x \]
と定める.

例えば,$f(x)=x^2$の場合,実数$x$に対して$\alpha$の方程式$f(\alpha)=f(x)$は$\alpha^2=x^2$であり,$\alpha=\pm x$となる.したがって,その$2$つの$\alpha$のうち大きい方をとれば次を得る.

$x<0$のとき$\alpha=-x$により$F(x)=\alpha-x=-2x=2 |x|$
$x \geqq 0$のとき$\alpha=x$により$F(x)=\alpha-x=0$

以下では$f(x)=x^3-3b^2x (b>0)$に対して,上の操作で定めた関数$F(x)$を考える.

(1)$F(-b),\ F(0),\ F(b)$の値を求めよ.
(2)$F(x)=0$となる$x$の範囲を求めよ.また$F(x)>0$となる$x$の範囲を求めよ.
(3)$F(x)>0$となる$x$に対し,$f(\alpha)=f(x)$を満たす最大の$\alpha$を$x$の式で表せ.
(4)関数$y=F(x)$を求め,そのグラフの概形をかけ.また$F(x)$の最大値を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ヒ]$までに当てはまる数字$0$~$9$を求めよ.ただし,分数は既約分数として表しなさい.

(1)$a$を実数とするとき,方程式
\[ |x|-|x^2-4|+|x+6|=a \]
を考える.この方程式の実数解が$2$個であるための条件は
\[ a<[ア],\quad [イ]<a<[ウ][エ] \]
であり,実数解を持たないための条件は
\[ a>[オ][カ] \]
である.また,次の不等式
\[ |x|-|x^2-4|+|x+6|>2 \]
には,正の整数解が$[キ]$個,負の整数解が$[ク]$個ある.
(2)空間内に点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,それぞれの大きさと内積が
\[ \begin{array}{l}
|\overrightarrow{a}|=9,\quad |\overrightarrow{b}|=12,\quad |\overrightarrow{c}|=\sqrt{42}, \\ \\
\overrightarrow{a} \cdot \overrightarrow{b}=72,\quad \overrightarrow{a} \cdot \overrightarrow{c}=57,\quad \overrightarrow{b} \cdot \overrightarrow{c}=48
\end{array} \]
であるとする.$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角は$\displaystyle \frac{1}{[ケ]} \pi$であり,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[コ][サ]}{[シ]}$である.ベクトル
\[ \overrightarrow{\mathrm{OA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}} \]
が$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と直交するのは$\displaystyle s=\frac{[ス]}{[セ]}$,$\displaystyle t=\frac{[ソ]}{[タ]}$のときである.したがって,四面体$\mathrm{OABC}$の体積は$[チ][ツ]$である.
(3)三角関数についての等式
\[ [テ] \cos^3 \theta-[ト] \cos \theta-\cos 3\theta=0 \]
を利用して,$t$に関する$3$次方程式
\[ [テ]t^3-[ト]t-\frac{\sqrt{2}}{2}=0 \]
を解いたとき,$\displaystyle \cos \frac{3}{4} \pi$が解の$1$つであることがわかる.したがって,この方程式の残りの$2$つの解は
\[ \cos \frac{[ナ]}{12} \pi=\frac{\sqrt{[ニ]}+\sqrt{[ヌ]}}{[ネ]} \]

\[ \cos \frac{[ノ]}{12} \pi=\frac{\sqrt{[ニ]}-\sqrt{[ヌ]}}{[ネ]} \]
となる.これより,
\[ \tan \frac{[ナ]}{12} \pi=[ハ]-\sqrt{[ヒ]} \]
となる.
神奈川大学 私立 神奈川大学 2012年 第2問
連立不等式
\setstretch{2}
\[ \left\{ \begin{array}{l}
x+2y \leqq 2 \\
-x+2y \leqq 2 \\
x^2-y \leqq 4
\end{array} \right. \]
\setstretch{1.3}
の表す領域を$D$とする.このとき,次の問いに答えよ.

(1)$D$を図示せよ.
(2)点$(x,\ y)$が領域$D$内を動くとき,$x+y$の最大値と,そのときの$x,\ y$の値を求めよ.
(3)点$(x,\ y)$が領域$D$内を動くとき,$|x+y|$の最大値と,そのときの$x,\ y$の値を求めよ.
関西大学 私立 関西大学 2012年 第2問
次の$[ ]$をうめよ.

(1)$y=|\abs{x-2|+2x-3}$のとき,$y$を絶対値を用いずに$x$で表すと
\[ \begin{array}{cll}
x \leqq [$①$] & \text{のとき} & y=[$②$] \\
[$①$]<x \leqq [$③$] & \text{のとき} & y=[$④$] \\
[$③$]<x & \text{のとき} & y=[$⑤$]
\end{array} \]
となる.
(2)$y=|\abs{x-2|+2x-3}$のグラフと直線$y=4$とは$x=[$⑥$]$および$x=[$④chi$]$(ただし,$[$⑥$]<[$④chi$]$とする)で交わる.また,$y=|\abs{x-2|+2x-3}$のグラフと直線$y=4$とで囲まれた図形の面積は$[$\maruhachi$]$である.
金沢工業大学 私立 金沢工業大学 2012年 第1問
次の問いに答えよ.

(1)$x=\sqrt{7}-\sqrt{3}$,$y=\sqrt{7}+\sqrt{3}$のとき,$\displaystyle \frac{1}{x}-\frac{1}{y}=\frac{\sqrt{[ア]}}{[イ]}$であり,$\displaystyle \frac{1}{x^3}-\frac{1}{y^3}=\frac{[ウ] \sqrt{[エ]}}{[オ]}$である.
(2)$(9x-5)(2x+3)+10x-41=([カ]x-[キ])([ク]x+[ケ])$である.
(3)連立不等式$\displaystyle \frac{5x-7}{3}-1 \leqq x+2<\frac{4x-3}{2}$の解は$\displaystyle \frac{[コ]}{[サ]}<x \leqq [シ]$である.
(4)等式$2 |x-1|+x-7=0$を満たす実数$x$の値は$[スセ]$と$[ソ]$である.
(5)男子$4$人,女子$3$人が$1$列に並ぶとき,男女が交互に並ぶ並び方は$[タチツ]$通りである.
(6)$1$から$9$までの整数を$1$つずつ書いたカードが$9$枚ある.この中から同時に$2$枚を取り出したとき,それらの整数の積が偶数である確率は$\displaystyle \frac{[テト]}{[ナニ]}$である.
(7)$0^\circ \leqq \theta \leqq 90^\circ$とする.$\displaystyle \sin \theta=\frac{1}{5}$のとき,
\[ \sin (180^\circ-\theta)+\cos (180^\circ-\theta)+\tan (90^\circ-\theta)=\frac{[ア]+[イ] \sqrt{[ウ]}}{[エ]} \]
である.
(8)$a,\ b$を正の整数の定数とする.$2$次関数$y=2x^2+(a-2)x+3-b$のグラフが$x$軸と接するとき,$a=[オ]$,$b=[カ]$,あるいは$a=[キ]$,$b=[ク]$である.ただし,$[オ]<[キ]$である.
関西大学 私立 関西大学 2012年 第3問
関数$f(x)=|x(x+2)|$のグラフを$C$とする.次の$[ ]$をうめよ.

(1)$k$を定数とし,直線$y=x+k$を$\ell$とする.$C$と$\ell$が共有点を持たないのは,$k$の値が$[$①$]$の範囲のときである.共有点が$1$個であるのは,$k$の値が$[$②$]$のときである.共有点が$2$個であるのは,$k$の値が$[$③$]$の範囲のときであり,共有点が$3$個であるのは,$k$の値が$[$④$]$のときであり,共有点が$4$個であるのは,$k$の値が$[$⑤$]$の範囲のときである.
(2)$C$と直線$y=1$とで囲まれる部分の面積を$S$とするとき,$S$の値は$S=[$⑥$](\sqrt{2}-1)$である.
広島修道大学 私立 広島修道大学 2012年 第1問
次の各問に答えよ.

(1)方程式$|x-2|+|3x+3|=11$を解け.
(2)連立方程式
\[ \left\{ \begin{array}{l}
x+3y=14 \\
\log_{\sqrt{2}} (x-y)=2
\end{array} \right. \]
を解け.
(3)$a,\ b,\ c$を定数とする.関数$f(x)=x^3+ax^2+bx+c$が$f(3)=16$,$f^\prime(2)=f^\prime(-2)=9$を満たすとき,$a,\ b,\ c$の値を求めよ.
(4)$(3)$で求めた関数$f(x)$の増減を調べて,極値を求めよ.
広島修道大学 私立 広島修道大学 2012年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)不等式$x^2-x-6<0$の解は$[$1$]$であり,不等式$x^2-|x|-6<0$の解は$[$2$]$である.
(2)放物線$y=-x^2+4x$の頂点の座標は$[$3$]$である.また,この放物線を$x$軸方向に$[$4$]$,$y$軸方向に$[$5$]$だけ平行移動した放物線の方程式は$y=-x^2-2x-3$である.
(3)$x$についての不等式$\log_{\alpha}(3-x)-\log_{\alpha}(2x-3) \leqq 2$の解は,$\displaystyle \alpha=\frac{1}{2}$のとき$[$6$]$であり,$\alpha=2$のとき$[$7$]$である.
(4)$1$個のさいころを$3$回投げるとき,$3$回とも同じ目が出る確率は$[$8$]$である.また,目の和が$7$になる確率は$[$9$]$である.
(5)$(x-2)^{50}=a_0+a_1x+\cdots +a_{50}x^{50}$($a_0,\ a_1,\ \cdots,\ a_{50}$は実数)のとき,$a_{47}$の値は$[$10$]$であり,$a_0+a_1+\cdots +a_{50}$の値は$[$11$]$である.
北海道医療大学 私立 北海道医療大学 2012年 第3問
関数$f(x)=|x^2-4|$と$y$軸上の点$\mathrm{C}(0,\ 8)$を通る傾きが$k$である直線$\ell$について,以下の問に答えよ.ただし,$k$は定数とする.

(1)直線$\ell$の方程式を$k$を用いて表せ.

(2)$\displaystyle S(a)=\int_{-a}^a f(x) \, dx$とするとき,$S(2)$と$S(3)$を求めよ.

(3)$k=0$であるとき,直線$\ell$と関数$f(x)$で囲まれる部分の面積を求めよ.
(4)$k=4$であるとき,直線$\ell$と関数$f(x)$で囲まれる部分の面積を求めよ.
(5)$k$が範囲$0<k<4$にあるときの直線$\ell$と関数$f(x)$で囲まれる部分の面積を$k$を用いて表せ.
スポンサーリンク

「絶対値」とは・・・

 まだこのタグの説明は執筆されていません。