タグ「絶対値」の検索結果

61ページ目:全755問中601問~610問を表示)
東京慈恵会医科大学 私立 東京慈恵会医科大学 2012年 第1問
次の問いに答えよ.問い$(1)$~$(3)$については,$[ ]$にあてはまる適切な数値を記入せよ.

(1)$x$の$2$次不等式
\[ 6x^2-(16a+7)x+(2a+1)(5a+2) < 0 \]
をみたす整数$x$が$10$個となるように,正の整数$a$の値を定めると$[ア]$である.
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=\sqrt{2}$,$\mathrm{BC}=2$,$\mathrm{CA}=\sqrt{3}$とし外心を$\mathrm{O}$とする.このとき,$\overrightarrow{\mathrm{AO}}=s\overrightarrow{\mathrm{AB}}+t\overrightarrow{\mathrm{AC}}$をみたす実数$s,\ t$の値は$s=[イ],\ t=[ウ]$である.
(3)袋$\mathrm{A}$には赤玉$2$個と白玉$1$個,袋$\mathrm{B}$には赤玉$1$個と白玉$2$個が入っている.袋$\mathrm{A}$から玉を$2$個取り出して袋$\mathrm{B}$に入れ,よくかき混ぜて,袋$\mathrm{B}$から玉を$2$個取り出して袋$\mathrm{A}$に入れる.このとき,袋$\mathrm{A}$に入っている白玉の個数を$X$とすると,$X=0$となる確率は$[エ]$であり,$X=2$となる確率は$[オ]$である.
(4)関数$f(x)=|x^3|$が$x=0$で微分可能であるかどうか調べよ.
上智大学 私立 上智大学 2012年 第1問
次の空欄に適する数,数式を入れよ.

(1)$f(x)=|2 \sin x-\cos 2x+\displaystyle\frac{1|{2}}$とおく.$\sin x=[ア]$のとき$f(x)$は最大値$\displaystyle\frac{[イ]}{[ウ]}$をとる.また,$\sin x = \displaystyle\frac{[エ]+\sqrt{[オ]}}{[カ]}$のとき$f(x)$は最小値[キ]をとる.
(2)$x,\ y,\ z$は次の条件を満たす実数とする.
\[ 0 \leqq x \leqq y \leqq z \leqq \frac{4}{5}, \quad x+2y+z = 1 \]
このとき,$y$の最小値は$\displaystyle\frac{[ク]}{[ケ]}$,最大値は$\displaystyle\frac{[コ]}{[サ]}$である.
(3)不等式
\[ \log_2 x - 6\log_x 2 \geqq 1 \]
の解は
\[ \frac{[シ]}{[ス]} \leqq x < [セ], \quad x \geqq [ソ] \]
である.
川崎医療福祉大学 私立 川崎医療福祉大学 2012年 第2問
次の問に答えなさい.

(1)$2$つの関数
\[ \begin{array}{ll}
y=|x|-1 & \cdots\cdots① \\
y=-|x|+1 & \cdots\cdots②
\end{array} \]
がある.関数$①$のグラフを$C_1$,$②$のグラフを$C_2$とする.このとき,$C_1$と$C_2$は$2$点$(-[$12$],\ [$13$])$,$([$14$],\ [$15$])$で交わる.$C_1$は$y$軸と点$(0,\ [$16$])$で交わり,$C_2$は$y$軸と点$(0,\ [$17$])$で交わる.
(2)$2$つの関数
\[ \begin{array}{l}
y=\displaystyle\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} |x|-(\sqrt{5}+\sqrt{3}) \\ \\
y=-\displaystyle\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} |x|+(\sqrt{5}-\sqrt{3})
\end{array} \]
のグラフを,それぞれ,$C_1,\ C_2$とする.このとき,$C_1$と$C_2$は$2$点$(-[$18$],\ [$19$])$,$([$20$],\ [$21$])$で交わる.また,$C_1$と$C_2$で囲まれた部分の面積は$\displaystyle\frac{[$22$]}{[$23$]}$である.
東北学院大学 私立 東北学院大学 2012年 第3問
関数$f(x)=(x-2)|x-3|$について以下の問いに答えよ.

(1)$y=f(x)$のグラフの概形を描け.
(2)点$(2,\ 0)$における接線の方程式およびこの接線と$y=f(x)$の交点の座標を求めよ.
(3)$(2)$で求めた接線と$y=f(x)$のグラフで囲まれた部分の面積を求めよ.
東北学院大学 私立 東北学院大学 2012年 第4問
関数$\displaystyle f(x)=\sin x-\frac{1}{2} (0 \leqq x \leqq \pi)$について以下の問いに答えよ.

(1)$\displaystyle \int_0^{\frac{\pi}{4}} f(x) \, dx$を求めよ.
(2)$y=|f(x)|$のグラフの概形を描け.
(3)$\displaystyle F(a)=\int_0^a |f(x)| \, dx (0 \leqq a \leqq \pi)$を求めよ.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$\triangle \mathrm{ABC}$において,$\mathrm{AC}=10$,$\mathrm{BC}=6$,$\displaystyle \cos A=\frac{4}{5}$とし,辺$\mathrm{AC}$の中点を$\mathrm{M}$とする.このとき,$\tan A=[ア]$であり,$\triangle \mathrm{BCM}$の外接円の半径は$[イ]$である.
(2)関数$f(x)=|x-1|-|x+2|+|x-3|$が,$f(a)=0$を満たすとき,$a=[ウ]$である.また,$y=f(x)$のグラフと$x$軸で囲まれた図形の面積は$[エ]$である.
(3)$k$を正の実数とする.$3$次関数$f(x)=kx^3+3kx^2-9kx+3$の極大値は$[オ]$である.また,$f(x)=0$が正の実数解を持つような$k$の値の範囲は$[カ]$である.
(4)円$C:x^2+(y-2)^2=1$と点$\mathrm{A}(2,\ 0)$がある.この$C$上の点$\mathrm{P}$と$\mathrm{A}$を結ぶ線分$\mathrm{PA}$の中点を$\mathrm{Q}$とするとき,$\mathrm{Q}$の軌跡の方程式は$[キ]$である.また,$\mathrm{Q}$の軌跡と$C$が交わる点の$x$座標は$[ク]$である.
(5)$a>1$に対して最小値が$2$である関数$f(x)=\log_a (x^2-2x+3)$と,関数$g(x)=\log_2 (2x-1)^2$がある.このとき,$a=[ケ]$であり,$f(x)=g(x)$を満たす$x$の値は$[コ]$である.
甲南大学 私立 甲南大学 2012年 第1問
以下の空欄にあてはまる数を入れよ.

(1)$2$次方程式$x^2+2(a-\sqrt{3})x-3 \sqrt{3}a+9=0$が$2$つの異なる実数解をもち,$x^2+ax+1=0$が虚数解をもつような$a$の値の範囲は$[1]<a<[2]$である.
(2)$\displaystyle 0<x \leqq \frac{\pi}{2}$とするとき,$\displaystyle 2-\cos^2 x+\frac{1}{4 \sin^2 x}$の最小値は$[3]$であり,そのときの$x$の値は$[4]$である.
(3)$y=|x-1|-|2x-4|$は$x=[5]$のときに最大値$[6]$をとる.
(4)$4^{200}$は$[7]$桁の整数である.また,$3^{-200}$は小数第$[8]$位にはじめて$0$でない数字が現れる.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(5)袋の中に,$3,\ 3,\ 3,\ 3,\ 4,\ 4,\ 4,\ 5,\ 5$の$9$つの数字が$1$つずつ書かれた$9$個の玉があり,この中から$2$個取り出す.このとき,取り出された$2$個の玉に書かれた数の和が$8$となる確率は$[9]$であり,数の和の期待値は$[10]$である.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)方程式$|3x-2|+x-5=1$を解くと$x=[ア]$である.また,不等式$2x^2-4>|x-1|$を解くと$[イ]$である.
(2)実数$a$に対し,$3$次方程式$x^3+(a-2)x^2+(16-2a)x-32=0$を考える.この方程式の解のうち$a$によらない解は$x=[ウ]$である.また,この方程式が$2$重解をもつような$a$の値を求めると$a=[エ]$である.
(3)$0<a<1$のとき,$x$についての方程式
\[ \log_2 (8ax-1)+\frac{\log_a (x-a)}{\log_a 2}+1=\log_2 2a \]
の解を$a$で表すと$x=[オ]$である.また,この解を最小にする$a$の値を求めると$a=[カ]$である.
(4)円に内接する四角形$\mathrm{ABCD}$の各辺の長さを$\mathrm{AB}=3$,$\mathrm{BC}=6$,$\mathrm{CD}=6$,$\mathrm{DA}=4$とし,対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{E}$とする.このとき,線分$\mathrm{AE}$,$\mathrm{BE}$の長さの比$\displaystyle \frac{\mathrm{AE}}{\mathrm{BE}}$の値を求めると$\displaystyle \frac{\mathrm{AE}}{\mathrm{BE}}=[キ]$であり,$\mathrm{AE}$の長さを求めると$\mathrm{AE}=[ク]$である.
上智大学 私立 上智大学 2012年 第4問
$\log x$は自然対数,$e$は自然対数の底を表す.

(1)$a,\ b$は$e^{-1}<a<1,\ b>0$を満たす実数とする.曲線$C:y=\log x$と直線$\ell:y=ax+b$とが接しているとすると,
\[ b=[モ] \log a+[ヤ] \]
が成り立つ.このとき,曲線$C$と$3$つの直線$\ell$,$x=1$,$x=e$とで囲まれた図形の面積を$S(a)$とする.$a$が$e^{-1}<a<1$の範囲を動くときの$S(a)$の最小値は
\[ \left( [ユ]e+[ヨ] \right) \log \left( \frac{e+[ラ]}{[リ]} \right) +[ル] \]
で与えられる.
(2)$k$を正の定数とし,$e^{-k}<t<1$である$t$に対して,
\[ f(t)=\int_0^k |e^{-x|-t} \, dx \]
とおく.$t$が$e^{-k}<t<1$の範囲を動くときの関数$f(t)$の最小値を$M(k)$とおくと,
\[ M(k)=\left( [レ]+e^P \right)^2,\quad \text{ただし} P=\frac{[ロ]}{[ワ]}k \]
となる.このとき
\[ \lim_{k \to +0} \frac{M(k)}{k^2}=\frac{[ヲ]}{[ン]} \]
である.
中央大学 私立 中央大学 2012年 第3問
以下の設問に答えよ.

(1)実数$a,\ b$および実数$x$に対し,
\[ F(x)=\int_{-1}^{2x+1} (at^2+b) \, dt \]
と定める.このとき$F(x)$の導関数$\displaystyle \frac{d}{dx}F(x)$を$a,\ b$を用いて表せ.
(2)正の実数$x$に対し,
\[ G(x)=\int_{-1}^{2x+1} |t-x| \, dt \]
と定める.このとき$G(x)$の導関数$\displaystyle \frac{d}{dx}G(x)$を求めよ.
スポンサーリンク

「絶対値」とは・・・

 まだこのタグの説明は執筆されていません。