タグ「絶対値」の検索結果

57ページ目:全755問中561問~570問を表示)
兵庫県立大学 公立 兵庫県立大学 2013年 第1問
次の問に答えなさい.

(1)$2$つの変数$x,\ y$をもつ関数$f(x,\ y)$を$\displaystyle f(x,\ y)=\frac{x+y}{2}+\frac{|x-y|}{2}$と定める.$x,\ y$が実数の値であるとき,$f(x,\ y)=x$は$x \geqq y$であるための必要十分条件であることを示しなさい.
(2)方程式$x^2+y^2-1+|x^2+y^2-1|=0$を満たす点$(x,\ y)$全体の集合を図示しなさい.
滋賀県立大学 公立 滋賀県立大学 2013年 第1問
定数$a_1<a_2<a_3< \cdots$に対して,連続関数$f_n(x) (n=1,\ 2,\ \cdots)$が$f_1(x)=|x-a_1|$,$f_{n+1}(x)=f_n(x)+|x-a_{n+1|}$によって定義されている.

(1)$a_1=1,\ a_2=2$のとき,$f_2(x)$の最小値を求めよ.
(2)$a_1=1,\ a_2=2,\ a_3=3$のとき,$f_3(x)$の最小値を求めよ.
(3)$n$が$2$以上の自然数であるとき,$f_n(x)$の最小値を求めよ.
滋賀県立大学 公立 滋賀県立大学 2013年 第4問
$a$を正の定数とする.曲線$y=|e^{-ax|\sin ax} (x \geqq 0)$において,極大となる点を$x$座標の小さい方から順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$とする.$\mathrm{P}_n (n=1,\ 2,\ \cdots)$を通り,$y$軸に平行な直線が$x$軸と交わる点を$\mathrm{Q}_n$とする.$\mathrm{P}_n$,$\mathrm{Q}_n$および原点を頂点とする三角形の面積を$S_n$とする.

(1)$\mathrm{P}_n$の座標を$a,\ n$を用いて表せ.
(2)$S_n$を$a,\ n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty}\frac{S_n}{S_{n+1}}$の値を求めよ.
首都大学東京 公立 首都大学東京 2013年 第2問
実数$a$に対し
\[ I=\int_0^1 |xe^x-a| \, dx \]
とする.以下の問いに答えなさい.ただし,$e$は自然対数の底とする.

(1)$0<a<e$のとき,$te^t=a$を満たす実数$t (0<t<1)$がただ$1$つ存在することを示しなさい.
(2)$0<a<e$のとき,$I$の値を$(1)$の$t$を用いて表しなさい.
(3)$a$がすべての実数を動くとき,$I$の値を最小にする$a$とそのときの$I$の値を求めなさい.
大阪府立大学 公立 大阪府立大学 2013年 第5問
$a,\ b$は実数の定数で$|a|<|b|$をみたすとする.行列$A$を
\[ A=\frac{1}{3} \left( \begin{array}{cc}
a+2b & -2a+2b \\
-a+b & 2a+b
\end{array} \right) \]
によって定めるとき,以下の問いに答えよ.

(1)$x_0 \left( \begin{array}{c}
2 \\
1
\end{array} \right)+y_0 \left( \begin{array}{c}
-1 \\
1
\end{array} \right)=\left( \begin{array}{c}
2 \\
13
\end{array} \right)$をみたす$x_0,\ y_0$を求めよ.
(2)$A \left( \begin{array}{c}
2 \\
1
\end{array} \right),\ A \left( \begin{array}{c}
-1 \\
1
\end{array} \right)$を求めよ.
(3)$n$を自然数とする.$x_n \left( \begin{array}{c}
2 \\
1
\end{array} \right)+y_n \left( \begin{array}{c}
-1 \\
1
\end{array} \right)=A^n \left( \begin{array}{c}
2 \\
13
\end{array} \right)$をみたす$x_n,\ y_n$を$a,\ b,\ n$を用いて表せ.
(4)数列$\{p_n\},\ \{q_n\}$を$\left( \begin{array}{c}
p_n \\
q_n
\end{array} \right)=A^n \left( \begin{array}{c}
2 \\
13
\end{array} \right)$によって定めるとき,$\displaystyle \lim_{n \to \infty}\frac{q_n}{p_n}$を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2013年 第2問
不等式$|\log_5x|+\log_5y \leqq 1$の表す座標平面上の領域を$D$とする.以下の問いに答えよ.

(1)領域$D$を図示せよ.
(2)領域$D$に含まれる点のうち,$x$座標と$y$座標がともに整数となるものは全部でいくつあるか答えよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2013年 第4問
$s$を実数とするとき,座標平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(s,\ |1-s|)$に対して,以下の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積を$t$とおく.$t$を$s$の関数で表せ.また,その$s$の関数を$f(s)$とおくとき,$t=f(s)$のグラフを描け.
(2)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\theta$とするとき,$\cos \theta \leqq 0$となる$s$の範囲を求めよ.
(3)線分$\mathrm{AB}$の中点を$\mathrm{C}$とするとき,線分$\mathrm{OC}$の長さの最小値を求めよ.また,そのときの$s$の値を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2013年 第7問
行列$C=\left( \begin{array}{cc}
0 & \displaystyle\frac{1}{2} \\
-\displaystyle\frac{1}{2} & 0
\end{array} \right)$について,以下の問いに答えよ.

(1)座標平面上の原点$\mathrm{O}$とは異なる点$\mathrm{A}$が,$C$の表す$1$次変換によって点$\mathrm{B}$に移されたとする.線分$\mathrm{OA}$の長さを$|\mathrm{OA|}$,線分$\mathrm{OB}$の長さを$|\mathrm{OB|}$とするとき,$\displaystyle \frac{|\mathrm{OB|}}{|\mathrm{OA|}}$を求めよ.また,$2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を求めよ.
(2)$C,\ C^2,\ \cdots,\ C^n$の表す$n$個($n \geqq 2$)の$1$次変換によって,座標平面上の点$\mathrm{P}_0$がそれぞれ点$\mathrm{P}_1,\ \mathrm{P}_2,\ \cdots,\ \mathrm{P}_n$に移されるとする.点$\mathrm{P}_0$の座標が$(1,\ 1)$であるとき,線分$\mathrm{P}_0 \mathrm{P}_1$,線分$\mathrm{P}_1 \mathrm{P}_2$,$\cdots$,線分$\mathrm{P}_{n-1} \mathrm{P}_n$の長さの総和を$L_n$とする.$\displaystyle \lim_{n \to \infty}L_n$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2013年 第4問
原点を$\mathrm{O}$とする$xyz$空間内に$1$辺の長さが$1$の正四面体$\mathrm{OPQR}$がある.点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通り$z$軸に平行な$3$直線と$xy$平面との交点をそれぞれ$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$,$\mathrm{R}^\prime$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{PQR}$,$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の面積をそれぞれ$S$,$S_1$とする.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の$3$点を通る平面と$xy$平面のなす角を$\theta$とするとき,$S_1=S |\cos \theta|$を示せ.
(2)$\mathrm{O}$が$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の周上を含む内部にあるとき,$z$軸と$\triangle \mathrm{PQR}$の交点を$\mathrm{A}$とする.このとき正四面体$\mathrm{OPQR}$の体積$V$は$\displaystyle V=\frac{1}{3} \mathrm{OA} \cdot S_1$となることを示し,$S_1$の最小値を求めよ.
(3)$\mathrm{O}$が$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の外部にあり,線分$\mathrm{OP}^\prime$と線分$\mathrm{Q}^\prime \mathrm{R}^\prime$が交点$\mathrm{B}$をもつとき,点$\mathrm{B}$を通り$z$軸に平行な直線と,直線$\mathrm{OP}$および直線$\mathrm{QR}$との交点をそれぞれ$\mathrm{C}$,$\mathrm{D}$とする.このとき四角形$\mathrm{OQ}^\prime \mathrm{P}^\prime \mathrm{R}^\prime$の面積を$S_2$とすると$\displaystyle V=\frac{1}{3} \mathrm{CD} \cdot S_2$となることを示し,$S_2$の最大値を求めよ.
釧路公立大学 公立 釧路公立大学 2013年 第3問
$k$を$0<k<1$の範囲の定数とする.直線$\ell:y=kx$と曲線$C:y=|x^2-2x|$について以下の各問に答えよ.

(1)直線$\ell$と曲線$C$の交点$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$を求めよ.ただし,$0<x_1<x_2$とする.
(2)原点を$\mathrm{O}$として,線分$\mathrm{OP}_1$と曲線$C$で囲まれる部分の面積を$S_1$,線分$\mathrm{P}_1 \mathrm{P}_2$と曲線$C$で囲まれる部分の面積を$S_2$とする.このとき,$S_1$と$S_2$をそれぞれ$k$の関数で表せ.
(3)$S=S_1+S_2$とする.このとき,$S$が最小となる$k$の値を求めよ.
スポンサーリンク

「絶対値」とは・・・

 まだこのタグの説明は執筆されていません。