タグ「絶対値」の検索結果

49ページ目:全755問中481問~490問を表示)
岩手大学 国立 岩手大学 2013年 第5問
$y=-x(x-a)$で与えられる放物線$C_1$と関数$y=a-|ax+b|$のグラフ$C_2$が原点で接している.ただし,実数$a$は正とする.このとき,次の問いに答えよ.

(1)$b$を$a$を用いて表せ.
(2)$a=2$のとき,$C_1$と$C_2$を図示せよ.
(3)(2)において$C_1$と$x$軸で囲まれた図形の面積と,$C_1$と$C_2$によって囲まれた図形の面積の比を求めよ.
宮城教育大学 国立 宮城教育大学 2013年 第5問
以下の問いに答えよ.

(1)$a>0$のとき,
\[ S(a)=\int_0^{\frac{\pi}{2}} |\sin 2x-a \cos x| \, dx \]
とする.$S(a)$の最小値を求めよ.
(2)$a>2$のとき,$2$曲線$\displaystyle y=\sin 2x,\ y=a \cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$y$軸で囲まれる図形を考える.この図形を$x$軸のまわりに$1$回転してできる立体の体積を$a$を用いて表せ.
秋田大学 国立 秋田大学 2013年 第1問
関数$f_n(x) \ (x \geqq 0)$を
\[ f_1(x)=|x-1|,\quad f_{n+1}(x)=|f_n(x)-(n+1)| \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.次の問いに答えよ.

(1)関数$y=f_2(x)$と$y=f_3(x)$のグラフをかけ.
(2)$a_n=f_n(0)$とおく.数列$\{a_n\} \ (n=1,\ 2,\ 3,\ \cdots)$の一般項を求めよ.
(3)$f_n(\alpha)=0$を満たす$\alpha$に対し,
\[ f_{n-i}(\alpha)=in-\frac{i(i-1)}{2} \quad (i=1,\ 2,\ 3,\ \cdots,\ n-1) \]
が成立することを証明せよ.
(4)$f_n(\alpha)=0$を満たす$\alpha$を$n$の式で表せ.
徳島大学 国立 徳島大学 2013年 第2問
$5$種類の文字$\mathrm{N},\ \mathrm{E},\ \mathrm{S},\ \mathrm{W},\ \mathrm{X}$を重複を許して横一列に$6$個並べた順列を考える.原点から出発して座標平面上を動くことができる点$\mathrm{P}$がある.それぞれの順列に対し,順列の文字を左端から$1$つずつ見てゆき,次の規則に従って点$\mathrm{P}$を動かし点$\mathrm{P}$の最終的な位置を決める.$\mathrm{X}$以外の各文字に対して,点$\mathrm{P}$を次の方向に$1$だけ動かす.

$\mathrm{N}$は$y$軸の正の方向 \quad $\mathrm{E}$は$x$軸の正の方向 \quad $\mathrm{S}$は$y$軸の負の方向 \quad $\mathrm{W}$は$x$軸の負の方向

$\mathrm{X}$に対しては点$\mathrm{P}$は動かさない.例えば,順列$\mathrm{NESNXN}$に対する点$\mathrm{P}$の最終的な位置は$(1,\ 2)$となる.

(1)$x+y=6$を満たす$(x,\ y)$が点$\mathrm{P}$の最終的な位置となる順列の総数を求めよ.
(2)$|x+y|=4$を満たす$(x,\ y)$が点$\mathrm{P}$の最終的な位置となる順列の総数を求めよ.
(3)点$\mathrm{P}$の最終的な位置が原点である順列の総数を求めよ.
徳島大学 国立 徳島大学 2013年 第3問
実数$a,\ b$は$ab+\sqrt{(2-a^2)(2-b^2)}=0$を満たす.
\[ A=\left( \begin{array}{cc}
a & b \\
\sqrt{2-a^2} & \sqrt{2-b^2}
\end{array} \right) ,\quad B=\left( \begin{array}{cc}
a & \sqrt{2-a^2} \\
b & \sqrt{2-b^2}
\end{array} \right) \]
とする.

(1)$a^2+b^2$の値を求めよ.
(2)$2 \times 1$行列$X=\left( \begin{array}{c}
s \\
t
\end{array} \right)$に対して,$|X|=\sqrt{s^2+t^2}$と定める.$P=\left( \begin{array}{c}
x \\
y
\end{array} \right)$に対して,$|BP|=\sqrt{2} |P|$が成り立つことを示せ.
(3)$AB$を求めよ.
(4)$E$を$2$次の単位行列とする.$5(A^{-1}+B^{-1})=E$が成り立つとき,$A$を求めよ.
徳島大学 国立 徳島大学 2013年 第5問
次の問いに答えよ.

(1)不等式$(x-1)^2-3 |x-1|+1<0$を満たす整数$x$をすべて求めよ.
(2)すべての自然数$n$に対して,$2^{n-1}+3^{3n-2}+7^{n-1}$が$5$の倍数であることを,数学的帰納法を用いて証明せよ.
茨城大学 国立 茨城大学 2013年 第2問
以下の各問に答えよ.

(1)不等式$x+|y-1| \leqq 1$の表す領域を図示せよ.
(2)$a$を実数とする.このとき,
\[ A \left( \begin{array}{c}
1 \\
2
\end{array} \right)=\left( \begin{array}{c}
3 \\
1 \\
2
\end{array} \right) \quad \text{かつ} \quad A \left( \begin{array}{c}
2 \\
a
\end{array} \right)=\left( \begin{array}{c}
2 \\
1 \\
3
\end{array} \right) \]
を満たす行列$A$が存在するかどうかを調べよ.存在するときは$A$を求め,存在しないときは「存在しない」と答えよ.
茨城大学 国立 茨城大学 2013年 第2問
$f(x)=x^3-x+5$として,曲線$y=f(x)$を$C$とする.点$\mathrm{P}(a,\ f(a))$における$C$の接線を$\ell$,法線を$n$とする.以下の各問に答えよ.ただし,点$\mathrm{P}$における$C$の法線とは,点$\mathrm{P}$を通り,かつ点$\mathrm{P}$における$C$の接線に直交する直線のことである.

(1)$\ell,\ n$の方程式をそれぞれ求めよ.
(2)$\ell$と$C$の共有点で,$\mathrm{P}$以外のものの個数を求めよ.
(3)$\displaystyle |a|<\frac{1}{\sqrt{3}}$のときには,$n$と$C$との共有点が$\mathrm{P}$以外にも存在することを示せ.
東京学芸大学 国立 東京学芸大学 2013年 第1問
実数$x,\ y,\ z,\ w$が$xy=1,\ z+w=1,\ xw+yz=1,\ yzw=1$をみたすとき,下の問いに答えよ.

(1)$|x| \neq 1$であることを示せ.
(2)$x,\ y,\ z,\ w$の値を求めよ.
奈良教育大学 国立 奈良教育大学 2013年 第1問
次の設問に答えよ.

(1)$2$次方程式$x^2-ax-a+8=0$が,異なる$2$つの正の実数解をもつように,定数$a$の値の範囲を定めよ.
(2)次の等式を満たす実数$x$の値を求めよ.
\[ |x|+2 |x-2|=x+2 \]
スポンサーリンク

「絶対値」とは・・・

 まだこのタグの説明は執筆されていません。