タグ「絶対値」の検索結果

35ページ目:全755問中341問~350問を表示)
三重県立看護大学 公立 三重県立看護大学 2015年 第3問
$x \geqq 0$のとき,$\displaystyle \int_0^x |t^2-3t+2| \, dt$を計算しなさい.
九州大学 国立 九州大学 2014年 第3問
座標平面上の楕円
\[ \frac{(x+2)^2}{16}+\frac{(y-1)^2}{4}=1 \quad \cdots\cdots① \]
を考える.以下の問いに答えよ.

(1)楕円$①$と直線$y=x+a$が交点をもつときの$a$の値の範囲を求めよ.
(2)$|x|+|y|=1$を満たす点$(x,\ y)$全体がなす図形の概形をかけ.
(3)点$(x,\ y)$が楕円$①$上を動くとき,$|x|+|y|$の最大値,最小値とそれを与える$(x,\ y)$をそれぞれ求めよ.
名古屋大学 国立 名古屋大学 2014年 第2問
大小合わせて$2$個のサイコロがある.サイコロを投げると,$1$から$6$までの整数の目が等しい確率で出るとする.

(1)$2$個のサイコロを同時に投げる.出た目の差の絶対値について,その期待値を求めよ.
(2)$2$個のサイコロを同時に投げ,出た目が異なるときはそこで終了する.出た目が同じときには小さいサイコロをもう一度だけ投げて終了する.終了時に出ている目の差の絶対値について,その期待値を求めよ.
東京大学 国立 東京大学 2014年 第3問
$u$を実数とする.座標平面上の$2$つの放物線
\[ \begin{array}{ll}
C_1: & y=-x^2+1 \\
C_2: & y=(x-u)^2+u
\end{array} \]
を考える.$C_1$と$C_2$が共有点をもつような$u$の値の範囲は,ある実数$a,\ b$により,$a \leqq u \leqq b$と表される.

(1)$a,\ b$の値を求めよ.
(2)$u$が$a \leqq u \leqq b$をみたすとき,$C_1$と$C_2$の共有点を$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$とする.ただし,共有点が$1$点のみのときは,$\mathrm{P}_1$と$\mathrm{P}_2$は一致し,ともにその共有点を表すとする.
\[ 2 |x_1y_2-x_2y_1| \]
を$u$の式で表せ.
(3)$(2)$で得られる$u$の式を$f(u)$とする.定積分
\[ I=\int_a^b f(u) \, du \]
を求めよ.
静岡大学 国立 静岡大学 2014年 第4問
$\alpha$を実数とする.$2$つの関数$f(x)=e^{-x}(\sin x-\cos x)$と$g(x)=\alpha e^{-x}$について,次の問いに答えよ.

(1)$\displaystyle \int f(x) \, dx=-e^{-x} \sin x+C$であることを示せ.ただし,$C$は積分定数である.
(2)すべての$x \geqq 0$について$f(x) \leqq g(x)$が成り立つような$\alpha$の値の最小値を求めよ.
(3)$\alpha$を$(2)$で求めた最小値とする.曲線$y=f(x) (x \geqq 0)$と曲線$y=g(x) (x \geqq 0)$との共有点の$x$座標を小さい方から順に$a_0,\ a_1,\ a_2,\ \cdots$とし,$n$が自然数であるとき,
\[ S_n=\int_{a_{n-1}}^{a_n} \left\{ g(x)-\frac{|f(x)|+f(x)}{2} \right\} \, dx \]
とする.このとき,$S_n$を求めよ.
(4)$(3)$で求めた$S_n$について,無限級数$\displaystyle \sum_{n=1}^\infty S_n$の和を求めよ.
北海道大学 国立 北海道大学 2014年 第5問
$\displaystyle f(x)=\int_x^{x+\frac{\pi}{3}} |\sin \theta| \, d\theta$とおく.

(1)$f^\prime(x)$を求めよ.
(2)$0 \leqq x \leqq \pi$における$f(x)$の最大値と最小値,およびそのときの$x$を求めよ.
千葉大学 国立 千葉大学 2014年 第4問
実数$a$に対し,関数$\displaystyle f(x)=\int_x^{x+1} |t+1| \, dt+a$を考える.曲線$C:y=f(x)$が$x$軸と$2$個の共有点を持つための$a$の範囲を求めよ.またこのとき曲線$C$と$x$軸で囲まれる部分の面積を求めよ.
熊本大学 国立 熊本大学 2014年 第2問
$\triangle \mathrm{ABC}$において,
\[ \angle \mathrm{BAC}=\theta,\quad \mathrm{AB}=\sin \theta,\quad \mathrm{AC}=|\cos \theta| \]
とする.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$または$\displaystyle \frac{\pi}{2}<\theta<\pi$とする.以下の問いに答えよ.

(1)$\mathrm{BC}^2$の最大値と最小値を求めよ.
(2)$\triangle \mathrm{ABC}$の面積の最大値を求めよ.
熊本大学 国立 熊本大学 2014年 第4問
$1$次関数$f_n(x)=a_nx+b_n (n=1,\ 2,\ 3,\ \cdots)$は以下の$2$つの条件を満たすとする.

(i) $f_1(x)=x$
(ii) $f_{n+1}(x)$は整式$\displaystyle P_n(x)=\int_1^x 6tf_n(t) \, dt$を$x^2+x$で割ったときの余りに等しい.

以下の問いに答えよ.

(1)$n \geqq 1$のとき,$a_{n+1}$,$b_{n+1}$を$a_n,\ b_n$を用いて表せ.
(2)$n \geqq 2$のとき,$|a_n|$と$|b_n|$は偶数であることを示せ.
(3)$n \geqq 2$のとき,$|a_n|$と$|b_n|$は$3$の倍数ではないことを示せ.
新潟大学 国立 新潟大学 2014年 第5問
自然数$n$に対して,$\displaystyle a_n=\int_0^1 \frac{x^2+(-x^2)^{n+1}}{1+x^2} \, dx$とおく.このとき,次の問いに答えよ.

(1)自然数$n$に対して,不等式
\[ |\int_0^1 \displaystyle\frac{x^2|{1+x^2} \, dx-a_n} \leqq \frac{1}{2n+3} \]
が成り立つことを示せ.

(2)定積分$\displaystyle \int_0^1 \frac{x^2}{1+x^2} \, dx$を求めよ.

(3)自然数$n$に対して,$\displaystyle a_n=\sum_{k=1}^n \frac{(-1)^{k+1}}{2k+1}$となることを示せ.

(4)極限値$\displaystyle \lim_{n \to \infty} \sum_{k=1}^n \frac{(-1)^{k+1}}{2k+1}$を求めよ.
スポンサーリンク

「絶対値」とは・・・

 まだこのタグの説明は執筆されていません。