タグ「絶対値」の検索結果

31ページ目:全755問中301問~310問を表示)
同志社大学 私立 同志社大学 2015年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)整式$P(x)$は$(x-2)(x+3)$で割ると余りは$5x-2$であり,$(x-2)(x-3)$で割ると余りは$-x+10$である.このとき,$P(x)$を$(x+3)(x-3)$で割ると余りは$([ア])x+([イ])$である.
(2)初項が$a_1=-24$で公差が$12$の等差数列$\{a_n\}$の初項から第$n$項までの和$S_n$は$S_n=[ウ]$である.また,数列$\{b_n\}$の初項$b_1$から第$n$項までの和$T_n$が$T_n=5^n-1$のとき,一般項は$b_n=[エ]$である.このとき,初項が$c_1=-1$で漸化式
\[ c_{n+1}=c_n+S_n-b_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定まる数列$\{c_n\}$の一般項は$c_n=[オ]$である.
(3)曲線$C:y=|x^2-4x-5|$と直線$\ell:y=k$の共有点の個数は$3$個である.このとき,実数$k$の値は$k=[カ]$であり,直線$\ell$と曲線$C$で囲まれた図形の面積は$[キ]$である.
(4)$1$個のサイコロを$3$回投げる.出た目の最大値が$5$となる確率は$[ク]$である.出た目の最大値が$5$,かつ最小値が$1$となる確率は$[ケ]$である.$3$つの出た目の積が$2$の倍数であり,かつ$3$の倍数でない確率は$[コ]$である.
津田塾大学 私立 津田塾大学 2015年 第1問
次の問いに答えよ.

(1)不等式$(|x-1|-1)(y-1)>0$の表す領域を図示せよ.
(2)平面上の直線$\displaystyle y=\frac{1}{2}x+1$に関して点$(2,\ 7)$と対称な点の座標を求めよ.
(3)$3$辺の長さが$x,\ 1-2x,\ 2-2x$である直方体がある.このような直方体のなかで体積が最大となるものの体積を求めよ.
津田塾大学 私立 津田塾大学 2015年 第3問
$f(x)=x^2-4x+1$とする.

(1)関数$y=f(|x|)$のグラフ$C$をかけ.
(2)$y=ax (a>0)$で表される直線$\ell$が,$C$とちょうど$3$個の共有点をもつとする.このとき定数$a$の値を求めよ.
(3)$\ell$と$C$で囲まれた図形のうち,$\ell$より上側にある部分の面積を求めよ.
東京電機大学 私立 東京電機大学 2015年 第4問
次の各問に答えよ.

(1)方程式$11+\log_2 x=\log_2 (33x+1)$を解け.
(2)$0 \leqq x \leqq 2\pi$のとき,不等式$\cos 2x+3 \sin x-2 \geqq 0$を解け.
(3)$3$次式$f(x)$は$x^3$の係数が$1$であり,しかも$f(1)=f(2)=f(6)=12$をみたしている.方程式$f(x)=0$を解け.
(4)曲線$C:y=x(x-1)(x+a)$上の点$(1,\ 0)$における接線が$C$自身と$x=3$において共有点をもつ.このとき,定数$a$の値を求めよ.
(5)曲線$C:y=|x^2-4|$と直線$\ell:y=2x+4$で囲まれた$2$つの図形の面積の和を求めよ.
神戸薬科大学 私立 神戸薬科大学 2015年 第2問
$a$を$a>1$となる定数とするとき,定積分
\[ S=\int_0^2 |x^2-3ax+2a^2| \, dx \]
の値を求めると,
\[ \left\{ \begin{array}{l}
\text{$1<a \leqq [エ]$のとき,$S=[オ]$であり,} \\
\text{$[エ]<a$のとき,$S=[カ]$である.} \phantom{\displaystyle\frac{\mkakko{}}{2}}
\end{array} \right. \]
岡山理科大学 私立 岡山理科大学 2015年 第1問
次の問いに答えよ.

(1)不等式$|3-2x|<1$を解け.
(2)次の等式が$x$についての恒等式となるように,定数$a,\ b$の値を定めよ.
\[ \frac{2x-18}{(x+3)(x-5)}=\frac{a}{x+3}+\frac{b}{x-5} \]
(3)和$\displaystyle \sum_{k=1}^n 2k(3k-1)$を求めよ.
東邦大学 私立 東邦大学 2015年 第10問
次のデータは,ある高校$3$年生$9$人の$100$点満点の試験の結果である.
\[ 65,\ 83,\ 64,\ 69,\ 89,\ 68,\ 77,\ 70,\ 81 \]
データを順に,$x_1,\ x_2,\ x_3,\ \cdots,\ x_9$と表す.このとき,$\displaystyle \sum_{i=1}^9 (x_i-\theta)^2$を最小にする$\theta$の値は$[スセ]$である.また,$\displaystyle \sum_{i=1}^9 |x_i-\theta|$を最小にする$\theta$の値は$[ソタ]$である.
神奈川大学 私立 神奈川大学 2015年 第1問
次の空欄$(\mathrm{a})$~$(\mathrm{g})$を適当に補え.

(1)不等式$|3x-5|<2x+1$を満たす$x$の値の範囲は$[$(\mathrm{a])$}$である.
(2)$t>0$とする.$2$つのベクトル$\overrightarrow{a}=(t+3,\ t-1)$と$\overrightarrow{b}=(-1,\ t)$が垂直であるとき,$t=[$(\mathrm{b])$}$である.
(3)白い玉が$3$個,赤い玉が$2$個入っている袋がある.袋から玉を$1$つ取り出し色を確かめ袋に戻す操作を$3$回行う.このとき,$2$回以上白い玉が出る確率は$[$(\mathrm{c])$}$である.

(4)$\displaystyle \lim_{h \to 0} \frac{e^{2h+2}-e^2}{h}=[$(\mathrm{d])$}$である.

(5)$8$つの数の集まり$\{-2,\ -1,\ 0,\ 1,\ 2,\ 3,\ 4,\ 5\}$を$2$組に分け,それぞれの組に属する数の和を考える.たとえば,
$\{-1,\ 0,\ 2,\ 4,\ 5\} \text{と} \{-2,\ 1,\ 3\}$
という組み分けについては,$10$と$2$である.このとき,
「どんな組み分けについても,少なくとも一方の和は$a$以上である」
という主張が成立するような数$a$のうち最大のものは$[$(\mathrm{e])$}$である.

(6)$\displaystyle \int_1^x \log t \, dt=[$(\mathrm{f])$}$であるので,$\displaystyle f(x)=\int_1^x (x-1) \log t \, dt$のとき,$f^\prime(x)=[$(\mathrm{g])$}$である.
東邦大学 私立 東邦大学 2015年 第12問
連立不等式$|x| \leqq 1$,$|y| \leqq 1$で表される領域を$x$軸および$y$軸のまわりに$1$回転してできる立体を,それぞれ$X,\ Y$とする.$X$と$Y$の共通部分の体積は$\displaystyle \frac{[クケ]}{[コ]}$である.
昭和大学 私立 昭和大学 2015年 第5問
$x,\ y,\ z$を実数とするとき,次の$(1)$~$(6)$までの文中の空欄に当てはまるものを$(ア)$~$(エ)$から一つ選べ.

(1)$xyz=0$は$xy=0$の$[ ]$.
(2)$x+y+z=0$は$x+y=0$の$[ ]$.
(3)$x(y^2+1)=0$は$x=0$の$[ ]$.
(4)$x^2+y^2=0$は$|x-y|=x+y$の$[ ]$.
(5)$xy<0$は$|x+y|>x+y$の$[ ]$.
(6)$(x^2+y^2)(x^2+z^2)=0$は$x=0$の$[ ]$.


\mon[(ア)] 必要条件であるが十分条件でない
\mon[(イ)] 十分条件であるが必要条件でない
\mon[(ウ)] 必要十分条件である
\mon[(エ)] 必要条件でも十分条件でもない
スポンサーリンク

「絶対値」とは・・・

 まだこのタグの説明は執筆されていません。