タグ「絶対値」の検索結果

19ページ目:全755問中181問~190問を表示)
東京電機大学 私立 東京電機大学 2016年 第4問
次の各問に答えよ.

(1)不等式$x^2-x-5<|2x-1|$を解け.
(2)和が$22$,最小公倍数が$60$となる$2$つの自然数を求めよ.
(3)関数$y=4 \sin^2 x-4 \cos x-3 (0 \leqq x \leqq \pi)$の最大値を求めよ.またそのときの$x$の値を求めよ.
(4)空間の$3$点$\mathrm{A}(1,\ 1,\ 2)$,$\mathrm{B}(2,\ 3,\ 1)$,$\mathrm{C}(0,\ 1,\ 2)$を考える.点$\mathrm{C}$から直線$\mathrm{AB}$に下ろした垂線と$\mathrm{AB}$との交点を$\mathrm{H}$とする.$\mathrm{H}$の座標を求めよ.
(5)$3$次方程式$x^3+x^2-2x+1=0$の$3$つの解を$a_1,\ a_2,\ a_3$とするとき,${a_1}^2+{a_2}^2+{a_3}^2$の値を求めよ.
沖縄国際大学 私立 沖縄国際大学 2016年 第2問
以下の各問いに答えなさい.

(1)「実数」は,「実数」と「実数」に$3$つの演算(加法・減法・乗法)を行った場合,再び「実数」になる.同じように,同じ数の分類同士で$3$つの演算を行った結果が,再びその分類になるものを以下のなかからすべて選びなさい.

有理数,自然数,整数

(2)以下の$(ⅰ),\ (ⅱ)$についてその式を因数分解した式を答えなさい.

(i) $18x^2+9x-5$
(ii) $x^3+125$

(3)以下の$(ⅰ),\ (ⅱ)$の不等式の解を答えなさい.

(i) $|x+2|<5$
(ii) $|x+3|<2x+1$

(4)次の命題の対偶となる命題を答えなさい.

「$n+1$が偶数ならば,$n$は奇数」
天使大学 私立 天使大学 2016年 第1問
次の問いに答えなさい.

(1)次の式を展開しなさい.

$(x+y)(x^2+xy+y^2)(x-y)^2(x^2+y^2)$
$=\mkakko{$\mathrm{a}$}x^7+\mkakko{$\mathrm{b}$} \mkakko{$\mathrm{c}$}x^4y^3+\mkakko{$\mathrm{d}$} \mkakko{$\mathrm{e}$}x^3y^4+\mkakko{$\mathrm{f}$}y^7$

(2)$360$の正の約数の個数とその総和を求めなさい.

約数の個数は$\mkakko{$\mathrm{g}$} \mkakko{$\mathrm{h}$}$個,約数の総和は$\mkakko{$\mathrm{i}$} \mkakko{$\mathrm{j}$} \mkakko{$\mathrm{k}$} \mkakko{$\mathrm{l}$}$である.

(3)実数$x$と$y$が$x<0<y$を満たすとき,次の式を簡単にしなさい.

$\sqrt{x^2-4xy+4y^2}+|3x-5y|=\mkakko{$\mathrm{m}$} \mkakko{$\mathrm{n}$}x+\mkakko{$\mathrm{o}$}y$

(4)$2,\ 3,\ A,\ 6,\ B$という値からなるデータがある.平均値が$5$,分散の値が$6$であるとき$A$と$B$の値を求めなさい.

$(A,\ B)=(\mkakko{$\mathrm{p}$},\ \mkakko{$\mathrm{q}$})$または$(\mkakko{$\mathrm{r}$},\ \mkakko{$\mathrm{s}$})$.ただし$\mkakko{$\mathrm{p}$}<\mkakko{$\mathrm{r}$}$である.
近畿大学 私立 近畿大学 2016年 第3問
$i$を虚数単位とする.異なる$3$つの複素数$\alpha,\ \beta,\ \gamma$の間に等式$\gamma-i \beta=(1-i) \alpha$が成り立つものとする.さらに,$\alpha$は方程式$|\alpha-2|=|\alpha-2 \sqrt{3|i}$を満たすとする.複素数平面において$3$点$\mathrm{A}(\alpha)$,$\mathrm{B}(\beta)$,$\mathrm{C}(\gamma)$を頂点とする$\triangle \mathrm{ABC}$を考える.

(1)$\angle \mathrm{BAC}={[アイ]}^\circ$,$\angle \mathrm{ABC}={[ウエ]}^\circ$,$\angle \mathrm{ACB}={[オカ]}^\circ$である.

(2)点$\mathrm{A}$が虚軸上にあるとき,$\displaystyle \alpha=\frac{[キ] \sqrt{[ク]}}{[ケ]}i$である.さらに点$\mathrm{B}$が実軸上にあるとすると,点$\mathrm{C}$は方程式
\[ |\gamma|=|\gamma-\delta| \quad \text{(ただし$\delta$は$0$と異なる定数)} \]
を満たす.このとき$\displaystyle \delta=\frac{[コ] \sqrt{[サ]}}{[シ]}$である.

(3)点$\mathrm{B}$および点$\mathrm{C}$がそれぞれ,実軸上,虚軸上にあるとき
\[ \alpha=[ス]-\sqrt{[セ]}+\left( [ソタ]+\sqrt{[チ]} \right) i \]
である.さらに,$\gamma$が方程式$|\gamma-2|=|\gamma-2 \sqrt{3|i}$を満たすとき
\[ \beta=\frac{[ツ]-[テ] \sqrt{[ト]}}{[ナ]} \]
である.
名城大学 私立 名城大学 2016年 第1問
次の$[ ]$にあてはまる答えを記入せよ.

(1)$100$未満の自然数で,$3$または$4$または$5$で割り切れる数は$[ア]$個,$3$または$4$で割り切れ$5$では割り切れない数は$[イ]$個である.
(2)\begin{mawarikomi}{45mm}{
(図は省略)
}
右図において,点$\mathrm{I}$を$\triangle \mathrm{ABC}$の内心,点$\mathrm{D}$を直線$\mathrm{AI}$と辺$\mathrm{BC}$の交点とし,$\mathrm{AB}=3$,$\mathrm{BC}=4$,$\mathrm{CA}=6$とする.このとき,$\mathrm{BD}=[ウ]$であり,$\displaystyle \frac{\mathrm{AI}}{\mathrm{ID}}=[エ]$である.
\end{mawarikomi}

(3)整数$a$を$3$進数${122}_{(3)}$で割ったときの商と余りは,それぞれ${212}_{(3)}$と${102}_{(3)}$である.このとき,$a$を$3$進法で表すと${[オ]}_{(3)}$であり,$a$と$5$進数${410}_{(5)}$の和を$5$進法で表すと${[カ]}_{(5)}$である.
(4)不等式$2 |x-a|<x+1$について考える.$a=5$のとき,この不等式を満たす整数$x$は$[キ]$個である.また,この不等式を満たす整数$x$が$5$個あるとき,整数$a$の値は$[ク]$である.
(5)$\displaystyle -\frac{\pi}{4} \leqq \theta \leqq \frac{\pi}{4}$で$\displaystyle \sin \theta+\cos \theta=\frac{1}{2}$のとき,$\sin 2\theta=[ケ]$,$\cos 2\theta=[コ]$である.
(6)$a,\ b$は自然数で,$a^5 b^2$が$20$桁の数であり,かつ,$\displaystyle \frac{a^5}{b^2}$の整数部分が$10$桁であるとする.このとき,$a,\ b$の桁数をそれぞれ$m,\ n$とすると,$m=[サ]$,$n=[シ]$である.
(7)円$x^2+y^2-2(x+y)+1=0$と直線$y+2x=k$が共有点をもつとき,$k$の最大値は$[ス]$である.また,この円と直線$y=ax-3a$が共有点をもつとき,$a$の最小値は$[セ]$である.
愛知県立大学 公立 愛知県立大学 2016年 第3問
関数$\displaystyle F(x)=\int_x^{x+1} |t^2-2t| \, dt (x \geqq 0)$に対して,以下の問いに答えよ.

(1)$F(0)$を求めよ.
(2)$x>0$に対して,$F(x)$の導関数$F^\prime(x)$を求めよ.
(3)$F(x)$の最小値とそのときの$x$を求めよ.
愛知県立大学 公立 愛知県立大学 2016年 第2問
原点を$\mathrm{O}$とする座標平面上に,異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$がある.それぞれの位置ベクトルを$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{p}$とし,$\overrightarrow{p}=s \overrightarrow{a}+t \overrightarrow{b}$および$2s+t=2$を満たすとする.ただし,$s>0$,$t>0$とする.また$\overrightarrow{a}$と$\overrightarrow{b}$がなす角度を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とする.このとき,以下の問いに答えよ.

(1)点$\mathrm{C}$の位置ベクトル$\overrightarrow{c}$が$\overrightarrow{c}=2 \overrightarrow{b}$を満たすとき,点$\mathrm{P}$は直線$\mathrm{AC}$上にあることを示せ.
(2)点$\mathrm{P}$を中心とする円が直線$\mathrm{OA}$,$\mathrm{OB}$に接しているとする.$|\overrightarrow{a|}=3$,$|\overrightarrow{b|}=1$とするとき,$s$と$t$を求めよ.
(3)$(2)$のとき,直線$\mathrm{OA}$に関して,点$\mathrm{P}$と対称な点$\mathrm{Q}$の位置ベクトルを$\overrightarrow{a}$,$\overrightarrow{b}$,$\theta$で表せ.
大阪府立大学 公立 大阪府立大学 2016年 第4問
$\displaystyle 0<a<\frac{\pi}{2}$とし,$\displaystyle f(t)=\int_0^a |\sin x-\sin t| \, dx$とおく.また,$f(t)$の$0<t<a$における最小値を$g(a)$とする.このとき,以下の問いに答えよ.

(1)$0<t<a$のとき,$f(t)$を求めよ.
(2)$g(a)$を求めよ.
(3)$\displaystyle \lim_{a \to +0} \frac{g(a)}{a^2}$を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2016年 第2問
関数$f(x)=1-|ax(1-x)-1|$について,以下の問いに答えよ.ただし,$a$は正の実数とする.

(1)$ax(1-x)-1$が常に負になるための$a$の条件を求めよ.
(2)$a=6$のとき,$y=f(x)$のグラフを描け.
(3)関数$f(x)$の最大値を$M(a)$とする.$a$がすべての正の実数値をとって変化するとき,点$(a,\ M(a))$を座標平面上に図示せよ.
(4)直線$y=x$と$y=f(x)$のグラフが$3$つの共有点をもつときの$a$の値を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2016年 第5問
$n$を自然数とする.以下の問いに答えよ.

(1)三角関数の加法定理を用いて次の等式を示せ.
\[ 2 \cos \alpha \sin \beta=\sin (\alpha+\beta)-\sin (\alpha-\beta) \]
(2)数学的帰納法によって,次の等式を証明せよ.
\[ 2 \sin \frac{\theta}{2} \sum_{l=1}^n \cos l \theta=\sin \left( n+\frac{1}{2} \right) \theta-\sin \frac{\theta}{2} \]
(3)$m$を整数とする.$\theta \neq 2m\pi$のとき,次の不等式が成り立つことを証明せよ.ただし,等号が成立する条件は調べなくてよい.
\[ |\sum_{l=1|^n \cos l \theta} \leqq \frac{1}{2} \left( 1+{|\sin \displaystyle\frac{\theta|{2}}}^{-1} \right) \]
スポンサーリンク

「絶対値」とは・・・

 まだこのタグの説明は執筆されていません。