タグ「結果」の検索結果

8ページ目:全91問中71問~80問を表示)
早稲田大学 私立 早稲田大学 2011年 第2問
次の問に答えよ.

(1)$a,\ b$は整数で,$2$次方程式
\[ x^2 + ax + b= 0 \dotnum{A} \]
が異なる$2$つの実数解$\alpha,\ \beta$をもつとする.このとき,$\alpha,\ \beta$はともに整数であるか,ともに無理数であるかのいずれかであることを証明する.以下の問に答え,証明を完成させよ.\\
\quad まず,$b=0$のときは,$x^2+ax=0$であるから\maru{A}は整数解$0,\ -a$をもつ.以下では$ b \neq 0$とする.\\
\quad 解と係数の関係より,$\alpha + \beta = -a,\ \alpha\beta = b$であり,これらは整数である.有理数と無理数の和は有理数でなく,整数と整数以外の有理数の和は整数ではないという事実を用いると,$\alpha,\ \beta$がともに整数以外の有理数であるとして矛盾を導けばよい.\\
\quad そこで,$\alpha,\ \beta$が2以上の整数$p_1,\ p_2$と0でない整数$q_1,\ q_2$を用いて,既約分数
\[ \alpha = \frac{q_1}{p_1},\quad \beta = \frac{q_2}{p_2} \]
で表されると仮定する.ここに,$\displaystyle\frac{q_i}{p_i}\ (i=1,\ 2)$が既約分数であるとは,$p_i$と$|q_i|$の最大公約数が1であることをいう.このとき,
\[ \alpha + \beta = \frac{p_2q_1+p_1q_2}{p_1p_2} \cdots\cdots① \]
\[ \alpha\beta = \frac{q_1q_2}{p_1p_2} \cdots\cdots② \]
である.

(i) $①$において,$\alpha+\beta$が整数であることを用いて,$p_1=p_2$であることを示せ.
(ii) $②$において,$\alpha\beta$が整数であることと問\maru{1}の結果から,既約分数の仮定に矛盾することを示せ.

$(ⅱ)$の結果から,$\alpha,\ \beta$はともに整数であるか,ともに無理数であることが示された.
(2)$c$が自然数のとき,$\sqrt{c}$は自然数であるか無理数であることを証明せよ.
早稲田大学 私立 早稲田大学 2011年 第4問
公正な硬貨$X$を$3$回投げる.「$1$回目に表が出る」という事象を$A$,「$3$回目に表が出る」という事象を$B$,「試行結果が裏→表の順序で出ることはない」という事象を$C$とする.このとき,
\[ P(A \cap C)-P(A)P(C)=\frac{[ス]}{[セ]} \]
である.

次に,硬貨$X$が必ずしも公正でなく表の出る確率が$a (0<a<1)$,裏の出る確率が$1-a$であるとする.この場合の確率を$P_a$で表すとき,
\[ \frac{P_a(A)P_a(B)P_a(C)}{P_a(A \cap B \cap C)} \]
を最小にする$a$の値は$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$である.

ただし,$[セ]$,$[タ]$はできるだけ小さな自然数で答えること.
上智大学 私立 上智大学 2011年 第3問
袋の中に赤玉$3$個,白玉$2$個,青玉$1$個が入っている.

(1)袋から玉を$1$個取り出して,色を調べてからもとに戻すことを$2$回繰り返す.その結果,赤玉が$a$回,白玉が$b$回,青玉が$c$回出たとする.このとき,この結果を$(a,\ b,\ c)$と書く.

(i) この結果として得られる$(a,\ b,\ c)$は$[ト]$通りある.

(ii) $(a,\ b,\ c)=(2,\ 0,\ 0)$となる確率は$\displaystyle \frac{[ナ]}{[ニ]}$,

$(a,\ b,\ c)=(1,\ 0,\ 1)$となる確率は$\displaystyle \frac{[ヌ]}{[ネ]}$である.

(iii) $(a,\ b,\ c)$という結果に対し,得点$a+2b+3c$を与えることにすると,得点の期待値は$\displaystyle \frac{[ノ]}{[ハ]}$である.

(2)袋から玉を$2$個取り出したとき,赤玉が$\alpha$個,白玉が$\beta$個,青玉が$\gamma$個出たとする.このとき,この結果を$(\alpha,\ \beta,\ \gamma)$と書く.

(i) この結果として得られる$(\alpha,\ \beta,\ \gamma)$は$[ヒ]$通りある.

(ii) $(\alpha,\ \beta,\ \gamma)=(2,\ 0,\ 0)$となる確率は$\displaystyle \frac{[フ]}{[ヘ]}$,

$(\alpha,\ \beta,\ \gamma)=(1,\ 0,\ 1)$となる確率は$\displaystyle \frac{[ホ]}{[マ]}$である.

(iii) $(\alpha,\ \beta,\ \gamma)$という結果に対し,得点$\alpha+2 \beta+3 \gamma$を与えることにすると,得点の期待値は$\displaystyle \frac{[ミ]}{[ム]}$である.
北海道科学大学 私立 北海道科学大学 2011年 第7問
$1$個のさいころを投げて$1$の目が出ると$1200$円,偶数の目が出ると$500$円,$3$または$5$の目が出ると$300$円の賞金が得られるとする.この試行において,さいころを$1$回投げて得られる賞金額の期待値は$[ ]$円である.また,この試行を$3$回続けて行った結果,賞金総額がちょうど$2000$円となる確率は$[ ]$である.
大同大学 私立 大同大学 2011年 第5問
次の問いに答えよ.

(1)$\displaystyle \frac{x^3(x-1)^2}{x^2+1}=x^3+px^2+qx+r+\frac{s}{x^2+1}$をみたす定数$p,\ q,\ r,\ s$の値を求めよ.
(2)置換積分法により,$x=\tan \theta$とおいて$\displaystyle \int_0^1 \frac{dx}{x^2+1}$の値を求めよ.
(3)$\displaystyle \frac{x^3(x-1)^2}{x^2+1} \geqq \frac{x^3(x-1)^2}{k} (0 \leqq x \leqq 1)$をみたす最小の正の定数$k$の値を求めよ.
(4)上の$(1)$,$(2)$,$(3)$の結果を使って,$\displaystyle \pi<\frac{63}{20}$を示せ.
早稲田大学 私立 早稲田大学 2011年 第4問
公正な硬貨$X$を$3$回投げる.「$1$回目に表が出る」という事象を$A$,「$3$回目に表が出る」という事象を$B$,「試行結果が裏→表の順序で出ることはない」という事象を$C$とする.このとき,
\[ P(A \cap C)-P(A)P(C)=\frac{[ス]}{[セ]} \]
である.

次に,硬貨$X$が必ずしも公正でなく表の出る確率が$a (0<a<1)$,裏の出る確率が$1-a$であるとする.この場合の確率を$P_a$で表すとき,
\[ \frac{P_a(A)P_a(B)P_a(C)}{P_a(A \cap B \cap C)} \]
を最小にする$a$の値は$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$である.

ただし,$[セ]$,$[タ]$はできるだけ小さな自然数で答えること.
京都府立大学 公立 京都府立大学 2011年 第1問
$\triangle \mathrm{ABC}$の$3$つの角$\angle \mathrm{A},\ \angle \mathrm{B},\ \angle \mathrm{C}$のそれぞれの大きさを$A,\ B,\ C$とする.以下の問いに答えよ.

(1)$\displaystyle \cos A+\cos B=2 \cos \frac{A+B}{2}\cos \frac{A-B}{2}$を余弦の加法定理から導け.
(2)$(1)$の結果を用いて$\displaystyle \cos A+\cos B \leqq 2\sin \frac{C}{2}$を示せ.また,等号が成り立つのはどのようなときか.
(3)$(2)$の結果を用いて$\cos A+\cos B+\cos C$が最大となるとき,$A,\ B,\ C$を求めよ.
広島市立大学 公立 広島市立大学 2011年 第3問
平面上の三角形ABCの頂点A,B,Cの位置ベクトルをそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$とするとき,以下の問いに答えよ.

(1)線分ABの垂直二等分線を$\ell$とする.$\ell$上の点Pの位置ベクトルを$\overrightarrow{p}$とするとき,直線$\ell$のベクトル方程式は$\displaystyle \overrightarrow{p} \cdot (\overrightarrow{b} - \overrightarrow{a})=\frac{1}{2}(|\overrightarrow{b}|^2-|\overrightarrow{a}|^2)$で与えられることを示せ.
(2)(1)の結果を用いて,三角形ABCの3つの辺の垂直二等分線が1点Dで交わることを示せ.
(3)(2)で定まる点Dの位置ベクトル$\overrightarrow{d}$が,$\displaystyle \overrightarrow{d}=\frac{4}{7}\overrightarrow{a}+\frac{4}{7}\overrightarrow{b}-\frac{1}{7}\overrightarrow{c}$を満たすものとする.

(4)辺ABの中点をMとするとき,3点C,M,Dは一直線上にあることを示し,$\text{CM}:\text{MD}$を求めよ.
(5)三角形ABCの三辺の長さの比$\text{BC}:\text{CA}:\text{AB}$を求めよ.
会津大学 公立 会津大学 2011年 第6問
$n$を自然数とし,
\[ S_n=1^2+2^2+3^2+\cdots +n^2 \]
とするとき,以下の問いに答えよ.

(1)次の等式を数学的帰納法を用いて証明せよ.
\[ S_n=\frac{n(n+1)(2n+1)}{6} \]
(2)(1)の結果を利用して,$S_{3n}+n$が$3$の倍数であることを証明せよ.
愛知県立大学 公立 愛知県立大学 2011年 第4問
実数を成分に持つ行列$A=\biggl( \begin{array}{cc}
a & b \\
b & a
\end{array} \biggr)$とベクトル$P=\biggl( \begin{array}{c}
x \\
y
\end{array} \biggr),\ Q=\biggl( \begin{array}{c}
z \\
w
\end{array} \biggr)$について,以下の問いに答えよ.ただし,$b \neq 0$とする.

(1)$\displaystyle x=\frac{\sqrt{2}}{2}$のとき,$AP=\alpha P$と$y>0$を満たす$\alpha$と$y$を求めよ.
(2)次の3条件を満たす$\beta,\ z,\ w$を求めよ.
\[ AQ=\beta Q,\quad z^2+w^2=1,\quad z<w \]
(3)(1)と(2)で定められた$\alpha,\ \beta,\ x,\ y,\ z,\ w$を用いて,次式を計算せよ.
\[ \alpha \biggl( \begin{array}{c}
x \\
y
\end{array} \biggr) ( \begin{array}{cc}
x & y
\end{array} ) +\beta \biggl( \begin{array}{c}
z \\
w
\end{array} \biggr) ( \begin{array}{cc}
z & w
\end{array} ) \]
(4)(3)の結果を用いて,$A^n$を求めよ.ただし,$n$は1以上の自然数とする.
スポンサーリンク

「結果」とは・・・

 まだこのタグの説明は執筆されていません。