タグ「結果」の検索結果

6ページ目:全91問中51問~60問を表示)
旭川医科大学 国立 旭川医科大学 2012年 第4問
曲線$C:y=\log x$上に異なる$2$点$\mathrm{A}(a,\ \log a)$,$\mathrm{B}(b,\ \log b)$をとり,$C$の$\mathrm{A}$における接線と$\mathrm{B}$における接線の交点について考える.次の問いに答えよ.

(1)任意に与えられた$a>1$に対して,$2$本の接線の交点がちょうど直線$x=1$上にくるような$b$が唯一つだけ存在し,$b<1$であることを示せ.
(2)$2$点$\mathrm{A}(a,\ \log a)$,$\mathrm{B}\displaystyle \left( \frac{1}{a},\ \log \frac{1}{a} \right) \ (a>1)$について,$2$本の接線の交点の$x$座標が$1$より大きいか小さいかを調べよ.
(3)$k$を自然数とする.$\displaystyle a=1+\frac{1}{k}$として(2)の結果を使って,次の不等式が成り立つことを示せ.
\[ \sum_{k=1}^n \frac{1}{k} > \frac{1}{2} \left( 1+\frac{1}{n} \right) +\log n \quad (n \geqq 2) \]
早稲田大学 私立 早稲田大学 2012年 第1問
$x$-$y$平面上に$2$点$\mathrm{A}(2,\ -1)$,$\mathrm{B}(-3,\ 3)$をとる.このとき、次の各問いに答えよ.答のみ解答欄に記入せよ.

(1)点$\mathrm{A}$,$\mathrm{B}$を通る円の中心を$(p,\ q)$とするとき,$p$と$q$の関係式を求めよ.
(2)点$\mathrm{A}$,$\mathrm{B}$を直径の両端とする円の方程式を
$(x-p_0)^2+(y-q_0)^2={r_0}^2 \quad (p_0,\ q_0,\ r_0\ \text{は定数})$の形に表せ.
(3)$(2)$の結果を用いて,点$\mathrm{A}$,$\mathrm{B}$を通る円の方程式を,$k \ (\neq 0)$を定数として
\[ k\left\{(x-p_0)^2+(y-q_0)^2-{r_0}^2\right\}+ax+by=c \]
と表すとき,$\displaystyle\frac{b}{a},\ \frac{c}{a}$を求めよ.
早稲田大学 私立 早稲田大学 2012年 第3問
表が出る確率が$a \ (0<a<\displaystyle\frac{1}{2})$,裏が出る確率が$1-a$のコインを1枚投げる試行を$n$回行う.ただし$n \geqq 2$とする.この$n$回の試行の結果,表が$2$回以上出る事象を$A_n$で表す.また$1$回目から$n$回目の試行が終わるまでに,[裏→表]の順で出ない事象を$B_n$で表す.つぎの問に答えよ.

(1)確率$P(A_n),\ P(B_n)$を求めよ.
(2)確率$P(A_n \cap B_n)$を求めよ.
(3)極限
\[ \lim_{n \to \infty} \frac{P(A_n)P(B_n)}{P(A_n \cap B_n)} \]
を求めよ.ただし,$0<r<1$をみたす$r$に対して,$\displaystyle\lim_{n \to \infty} nr^n = 0$となることを証明なしに用いてよい.
南山大学 私立 南山大学 2012年 第2問
座標空間に$3$つの点$\mathrm{A}(4,\ 5,\ 4)$,$\mathrm{B}(6,\ 2,\ 2)$,$\mathrm{C}(2,\ 1,\ 3)$がある.

(1)$3$つの内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$,$\overrightarrow{\mathrm{CA}} \cdot \overrightarrow{\mathrm{CB}}$を求めよ.
(2)$\triangle \mathrm{ABC}$は鋭角三角形,直角三角形,鈍角三角形のいずれになるか,(1)の結果を用いて示せ.
(3)点$\mathrm{P}(a,\ b,\ 0)$から,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$までの距離がそれぞれ$\sqrt{18}$,$\sqrt{17}$,$\sqrt{19}$であるとき,$a,\ b$の値を求めよ.
西南学院大学 私立 西南学院大学 2012年 第2問
袋の中に$4$枚のカードが入っており,それぞれのカードには$1,\ 2,\ 3,\ 4$の数字が書かれている.いま袋から$1$枚カードを取り出しては,そのつど袋に戻すという試行を何回か繰り返す.このとき,最後に取り出したカードに書かれた数が,得点になるものとする.以下の問に答えよ.

(1)試行が一度だけのとき,得点の期待値は$\displaystyle \frac{[キ]}{[ク]}$である.
(2)試行を二度行う権利を有するとき(試行を一度でやめても,二度目を行ってもよいとき),得点の期待値を最大にするには,$(1)$の結果より,一度目の数字$x$が$[ケ]$以下のときは二度目を行い,$x$が$[コ]$以上のときは一度でやめればよい.したがって,得点の期待値の最大値は$[サ]$となる.
西南学院大学 私立 西南学院大学 2012年 第5問
同一直線上にない$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.$\mathrm{O}$を原点として,以下の問に答えよ.

(1)線分$\mathrm{AB}$を$m:n$に内分する点$\mathrm{P}$の位置ベクトルは
\[ \overrightarrow{\mathrm{OP}}=\frac{n}{m+n} \overrightarrow{\mathrm{OA}}+\frac{m}{m+n} \overrightarrow{\mathrm{OB}} \]
で表されることを示せ.
(2)$\alpha,\ \beta$を実数として,点$\mathrm{Q}$を
\[ \overrightarrow{\mathrm{OQ}}=\alpha \overrightarrow{\mathrm{OA}}+\beta \overrightarrow{\mathrm{OB}} \]
で表されるベクトルの終点とする.$\alpha,\ \beta$が次のそれぞれの関係式を満たすとき,点$\mathrm{Q}$の存在範囲を図示せよ.ただし,結果に至るプロセスも示すこと.

\mon[$①$] $\alpha \geqq 0,\ \beta \geqq 0,\ \alpha+\beta=1$
\mon[$②$] $\alpha \geqq 0,\ \beta \geqq 0,\ \alpha+\beta \leqq 1$
\mon[$③$] $\alpha \geqq 0,\ \beta \geqq 0,\ 1 \leqq \alpha+\beta \leqq 2$
東京理科大学 私立 東京理科大学 2012年 第1問
$[ ]$内のカタカナにあてはまる$0$から$9$までの数字を求めよ.

(1)$k$を自然数とすると,不等式
\[ k>\frac{\sqrt{k}+\sqrt{k-1}}{2} \]
が成立する.この不等式の右辺の逆数は$\displaystyle [ア] \left( \sqrt{k}-\sqrt{k-[イ]} \right)$であるから,不等式
\[ \frac{1}{k}<[ア] \left( \sqrt{k}-\sqrt{k-[イ]} \right) \]
を得る.この不等式がすべての自然数$k$に対して成立することより,
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{k}=[ウ] \]
であることがわかる.
(2)自然数$n$に対し,
\[ a_n=\sum_{m=1}^{\infty} \frac{1}{m(m+n+1)},\quad s_n=\sum_{k=1}^n \frac{1}{k} \]
と定める.

(i) $\displaystyle \sum_{n=2}^{\infty} \frac{1}{n(n+1)}$を求めよ.

(ii) $\displaystyle \sum_{n=1}^{\infty} \left( \frac{1}{n}-\frac{1}{n+1} \right) s_{n+1}$を求めよ.

(ヒント:$n \geqq 2$であるような各自然数$n$に対して$s_{n+1}-s_n$を考えることにより,$(ⅰ)$の結果が使える形に変形せよ.)
(iii) $n$を自然数とする.また,$p$は自然数で,等式
\[ \sum_{m=1}^{\infty} \left( \frac{1}{m}-\frac{1}{m+n+1} \right)=s_p \]
が成立しているとする.このとき,$p$を$n$の$1$次式の形に表せ.
\mon[$\tokeishi$] $n$を自然数とし,$p$は$(ⅲ)$における通りであるとする.また,$q$は自然数で,等式
\[ a_n=\frac{s_p}{q} \]
が成立しているとする.このとき,$q$を$n$の$1$次式の形に表せ.
\mon[$\tokeigo$] $\displaystyle \sum_{n=1}^{\infty} \frac{a_n}{n}$を求めよ.
北海道薬科大学 私立 北海道薬科大学 2012年 第4問
関数$f(x)=x^3-2x^2$に対して,曲線$C$を$y=f(x)$で定義する.

(1)$C$上の点$(t,\ f(t))$における接線の方程式は
\[ y=([ア]t^2-[イ]t)(x-t)+t^3-[ウ]t^2 \]
である.
(2)$C$上の点$(a_n,\ f(a_n))$における接線が$C$上の他の点$(a_{n+1},\ f(a_{n+1}))$で交わるとすると
\[ a_{n+1}=[エオ]a_n+[カ] \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つ.この式を$a_{n+1}-p=q(a_n-p)$とおくと,定数$p,\ q$の値は
\[ p=\frac{[キ]}{[ク]},\quad q=[ケコ] \]
となる.
(3)$a_1=3$のとき,$(2)$の結果より
\[ a_n=\frac{[サ]}{[シ]}+\frac{[ス]}{[セ]}([ソタ])^{n-1} \]
が得られる.
九州産業大学 私立 九州産業大学 2012年 第4問
数列$\{a_n\}$の初項$a_1$から第$n$項$a_n$までの和を$S_n$とするとき,
\[ S_1=\frac{1}{2},\quad 4S_n=6a_n-10n+9 \]
を満たすとする.

(1)$a_1=[ア]$である.
(2)$a_n$と$a_{n+1}$の間に成り立つ漸化式は$a_{n+1}=[イ]$である.
(3)$\{a_n\}$の一般項は$a_n=[ウ]$である.
(4)$(3)$の結果を利用して$S_n$を求めると,$S_n=[エ]$である.
会津大学 公立 会津大学 2012年 第5問
連立不等式
\[ \left\{ \begin{array}{l}
x^2+y^2-1 \leqq 0 \\
x+y-1 \leqq 0 \\
x+2y-1 \geqq 0
\end{array} \right. \]
の表す領域を$D$とする.$D$を図示せよ.また,その結果を用いて,点$(x,\ y)$が領域$D$内を動くときの$2x+y$のとる値の最大値と最小値を求めよ.
スポンサーリンク

「結果」とは・・・

 まだこのタグの説明は執筆されていません。