タグ「結果」の検索結果

5ページ目:全91問中41問~50問を表示)
宮城教育大学 国立 宮城教育大学 2013年 第4問
$x>0$のとき,以下の問いに答えよ.

(1)不等式$2 \sqrt{x}>\log x$を示せ.
(2)関数$\displaystyle y=\frac{1-\log x}{x^2}$の増減,極値,グラフの凹凸および変曲点を調べ,そのグラフの概形をかけ.ただし,必要があれば,(1)の結果を用いてよい.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第8問
硬貨投げをしたとき,表,裏がそれぞれ$\displaystyle \frac{1}{2}$の確率で出る硬貨がある.この硬貨を用いて硬貨投げを$n$回繰り返す.$k=1,\ 2,\ \cdots,\ n$に対し,$k$回目の硬貨投げの結果に応じて$a_k$を次で定める:
\[ a_k=\left\{ \begin{array}{rl}
1 & k \text{回目の硬貨投げの結果が表のとき} \\
-1 & k \text{回目の硬貨投げの結果が裏のとき}
\end{array} \right. \]
また,この$a_k \ (k=1,\ 2,\ \cdots,\ n)$を用いて$n$次式$f(x)$を$\displaystyle f(x)=\sum_{k=1}^n a_kx^k$で定める.

(1)$n$が偶数のとき,$f(x)$が$x-1$で割り切れる確率を$n$を用いて表せ.
(2)$n$が$4$の倍数のとき,$f(x)$が$(x-1)(x+1)$で割り切れる確率を$n$を用いて表せ.
(3)$n$が$2$以上の自然数のとき,$f(2)=2$となる確率を$n$を用いて表せ.
長崎大学 国立 長崎大学 2013年 第2問
次の問いに答えよ.

(1)$\displaystyle a_1=\frac{3}{2},\ a_{n+1}+2a_{n+1}a_n-3a_n=0 \ (n \geqq 1)$で与えられる数列$\{a_n\}$について,$a_2,\ a_3,\ a_4,\ a_5$の値を求めよ.また,一般項$a_n$を推測し,その推測の結果を数学的帰納法で証明せよ.
(2)$\displaystyle \frac{7}{12}\pi=\frac{\pi}{3}+\frac{\pi}{4}$であることを利用して$\displaystyle \sin \frac{7}{12}\pi$を求め,$1 \leqq x \leqq 4$のとき,次の方程式を解け.
\[ \sin x=\frac{\sqrt{6}+\sqrt{2}}{4} \]
(3)$\displaystyle 0 \leqq x<\frac{\pi}{2}$とする.このとき,$X=\log_2 \cos x$の範囲を求め,次の不等式を解け.
\[ 2(\log_2 \cos x)^2+(4-\log_2 3)\log_2 \cos x+2-\log_23 \leqq 0 \]
{\bf 注意:} $\log_2 \cos x$は$\log_2(\cos x)$を表す.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第1問
次の$[ ]$にあてはまる適切な数値を記入せよ.

(1)数直線上を動く点$\mathrm{P}$が原点の位置にある.$2$個のさいころを同時に投げる試行を$\mathrm{T}$とし,試行$\mathrm{T}$の結果によって,$\mathrm{P}$は次の規則で動く.
(規則)$2$個のさいころの出た目の積が偶数ならば$+2$だけ移動し,奇数ならば$+1$だけ移動する.
試行$\mathrm{T}$を$n$回繰り返し行ったときの$\mathrm{P}$の座標を$x_n$とすると,$x_1=2$となる確率は$[ア]$であり,$x_3=3$かつ$x_4=5$となる確率は$[イ]$である.また,$\mathrm{P}$が座標$4$以上の点に初めて到達するまで試行$\mathrm{T}$を繰り返し行うとき,試行回数の期待値は$[ウ]$である.
(2)平面上に$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,$|\overrightarrow{\mathrm{OA}}|=|\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|=|2 \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|=1$をみたしている.このとき,$|\overrightarrow{\mathrm{OB}}|=[エ]$である.また,実数$s,\ t$が条件$1 \leqq s+3t \leqq 3$,$s \geqq 0$,$t \geqq 0$をみたしながら動くとき,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$で定められた点$\mathrm{P}$の存在する範囲の面積は$[オ]$である.
吉備国際大学 私立 吉備国際大学 2013年 第3問
$\angle \mathrm{A}={36}^\circ$,$\mathrm{AB}=\mathrm{AC}$の二等辺三角形$\mathrm{ABC}$の底角$\mathrm{C}$の二等分線が$\mathrm{AB}$と交わる点を$\mathrm{D}$とする.

(1)$\mathrm{BC}=2$のとき,辺$\mathrm{BD}$と$\mathrm{CA}$の長さを求めよ.
(2)$(1)$の結果を使って,$\sin {18}^\circ$と$\cos {36}^\circ$の値を求めよ.
松山大学 私立 松山大学 2013年 第3問
$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(5,\ 0)$,$\mathrm{B}(5,\ 4)$,$\mathrm{C}(0,\ 4)$を頂点とする長方形$\mathrm{OABC}$の辺$\mathrm{AB}$,$\mathrm{BC}$上にそれぞれ点$\mathrm{P}(5,\ m)$,$\mathrm{Q}(n,\ 4)$がある.また,$\angle \mathrm{POQ}={45}^\circ$,$\angle \mathrm{AOP}=\theta$とする.

(1)$\tan \theta$を$m$で表すと$\displaystyle \tan \theta=\frac{m}{[ア]}$である.$\tan (\theta+{45}^\circ)$を$n$で表すと$\displaystyle \tan (\theta+{45}^\circ)=\frac{[イ]}{n}$である.
(2)$(1)$の結果を利用して,$m$を$n$で表すと,$\displaystyle m=\frac{[ウエ]}{n+4}-[オ]$である.また,$n$の値の範囲は$\displaystyle \frac{[カ]}{[キ]} \leqq n \leqq [ク]$である.
(3)$\triangle \mathrm{OPQ}$の面積を$S$とするとき,$S$を$n$で表すと


$\displaystyle S=[ケコ]-\frac{[サシ]n}{n+4}+\frac{[ス]}{2}n$

\quad $\displaystyle =\frac{[セ]}{2}(n+4)-\frac{[ソタ](n+4)-[チツ]}{n+4}$

\quad $\displaystyle =\frac{[セ]}{2}(n+4)+\frac{[チツ]}{n+4}-[ソタ]$となる.

したがって,$S$の最小値は$[テト](\sqrt{[ナ]}-1)$となり,そのとき,$n=[ニ](\sqrt{[ヌ]}-1)$である.
杏林大学 私立 杏林大学 2013年 第4問
$[オ]$,$[タ]$,$[チ]$,$[ト]$,$[ナ]$の解答は対応する解答群の中から最も適当なものを$1$つ選べ.

条件$a_1=0$,$a_2=0$と漸化式
\[ a_{n+2}-3a_{n+1}+2a_n=2^n \log_2 \frac{(n+1)^2}{n} \cdots\cdots (*) \]
$(n=1,\ 2,\ 3,\ \cdots)$で定められる数列の一般項を,以下の要領で求めてみよう.

(1)漸化式$(*)$より,ベクトル$\overrightarrow{b_n}=\left( \begin{array}{c}
a_{n+1} \\
a_n
\end{array} \right)$に対して
\[ \overrightarrow{b_{n+1}}=A \overrightarrow{b_n}+\left( \begin{array}{c}
2^n \log_2 \displaystyle\frac{(n+1)^2}{n} \\
0
\end{array} \right) \]
が成立する.ただし,行列$A$は$A=\left( \begin{array}{cc}
[ア] & [イウ] \\
[エ] & 0
\end{array} \right)$である.
この式の両辺に,$A$の逆行列$A^{-1}$を左から$n$回かけると
\[ (A^{-1})^n \overrightarrow{b_{n+1}}=(A^{-1})^{n-1} \overrightarrow{b_n}+(A^{-1})^n \left( \begin{array}{c}
\displaystyle 2^n \log_2 \frac{(n+1)^2}{n} \\
0
\end{array} \right) \]
となり,$(A^{-1})^{n-1} \overrightarrow{b_n}$の階差数列がわかる.これより,$2$以上の整数$n$に対し,
\[ (A^{-1})^{n-1} \overrightarrow{b_{n}}=\overrightarrow{b_1}+\sum_{k=1}^{[オ]} (A^{-1})^k \left( \begin{array}{c}
\displaystyle 2^k \log_2 \frac{(k+1)^2}{k} \\
0
\end{array} \right) \cdots\cdots (**) \]
を得る.
(2)$(**)$式の右辺第一項は$\overrightarrow{b_1}=\left( \begin{array}{c}
[カ] \\
[キ]
\end{array} \right)$であり,$\displaystyle A^{-1}=\frac{1}{2} \left( \begin{array}{cc}
[ク] & [ケ] \\
[コサ] & [シ]
\end{array} \right)$は行列$P=\left( \begin{array}{cc}
2 & 1 \\
1 & 1
\end{array} \right)$を用いて
\[ A^{-1}=P \left( \begin{array}{cc}
\displaystyle\frac{[ス]}{[セ]} & 0 \\
0 & [ソ]
\end{array} \right) P^{-1} \]
と表されるので,$(**)$式右辺の和の項について,次式が成立する.
\[ \sum_{k=1}^{[オ]} (A^{-1})^k \left( \begin{array}{c}
\displaystyle 2^k \log_2 \frac{(k+1)^2}{k} \\
0
\end{array} \right)=P \left( \begin{array}{c}
\log_2 [タ] \\
-2^n \log_2 [チ]
\end{array} \right) \]
(3)$(2)$の結果と,行列$A$が同じ$P$を用いて
\[ A=P \left( \begin{array}{cc}
[ツ] & 0 \\
0 & [テ]
\end{array} \right) P^{-1} \]
と表わされることに注意すると,$(**)$式の両辺に行列$A$を左から$(n-1)$回かけて得られる$\overrightarrow{b_n}$から,一般項$a_n$は
\[ a_n=2^{[ト]} \log_2 [ナ] \]
($n=2,\ 3,\ 4,\ \cdots$)となる.

$[オ]$,$[ト]$の解答群
\[ \begin{array}{llll}
\nagamaruichi n-1 & \nagamaruni n & \nagamarusan n+1 & \nagamarushi 1-n \\
\nagamarugo -n & \nagamaruroku -n-1 \phantom{AA} & \nagamarushichi \displaystyle\frac{n(n+1)}{2} \phantom{AA} & \nagamaruhachi n^2-1 \\
\nagamarukyu \displaystyle\frac{1}{6}n(n+1)(2n+1) & & &
\end{array} \]
$[タ]$,$[チ]$,$[ナ]$の解答群
\[ \begin{array}{llll}
\nagamaruichi n-1 & \nagamaruni n & \nagamarusan \displaystyle\frac{n+1}{n} \phantom{AA} & \nagamarushi \displaystyle\frac{4n-6}{n} \\
\nagamarugo n^2-4n+5 & \nagamaruroku (n-1)! \phantom{AA} & \nagamarushichi n! \phantom{AA} & \nagamaruhachi n!-1 \\
\nagamarukyu (n-1) \times n! \phantom{AA} & \nagamarurei n \times n! & &
\end{array} \]
愛知県立大学 公立 愛知県立大学 2013年 第4問
$f=(x \quad y) \left( \begin{array}{cc}
a & b \\
c & a
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right)$とする.このとき,以下の問いに答えよ.ただし,$a$,$b$,$c$,$x$,$y$は実数とする.

(1)次の等式を満たす$d,\ e$を$a,\ b,\ c$を用いて表せ.
\[ \left( \begin{array}{cc}
a & b \\
c & a
\end{array} \right)=\left( \begin{array}{cc}
a & d \\
d & a
\end{array} \right)+\left( \begin{array}{cc}
0 & e \\
-e & 0
\end{array} \right) \]
(2)$b=c=0$のとき,$x=y=0$を除くすべての$x,\ y$に対して$f>0$となる$a$の条件を求めよ.
(3)$P=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$とし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.このとき,次の等式を満たす$z$,$w$,$\theta$を求めよ.ただし,$b \neq 0$とする.
\[ P^{-1} \left( \begin{array}{cc}
a & b \\
b & a
\end{array} \right) P=\left( \begin{array}{cc}
z & 0 \\
0 & w
\end{array} \right) \]
(4)(1)と(3)の結果を利用して,$x=y=0$を除くすべての$x,\ y$に対して$f>0$となる$a$の条件を$b,\ c$を用いて求めよ.
信州大学 国立 信州大学 2012年 第1問
次の条件によって定められる数列$\{a_n\}$について,以下の問に答えよ.
\[ a_1 = \frac{1}{2}, \quad a_{n+1} = \frac{8a_n-1}{25a_n-2} \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$a_2,\ a_3,\ a_4,\ a_5$を求めよ.
(2)(1)の結果に基づいて,一般項$a_n$を推測せよ.また,その推測が正しいことを証明せよ.
高知大学 国立 高知大学 2012年 第4問
次の問いに答えよ.

(1)次の不定積分を求めよ.
\[ \int \log (1+x) \, dx \]
(2)関数$f(x)$が区間$[0,\ 1]$で連続な増加関数であって,常に$f(x) \geqq 0$であるものとする.また,$n$を自然数とする.このとき,次の不等式が成り立つことを示せ.
\[ 0 \leqq \frac{1}{n} \sum_{k=1}^n f \left( \frac{k}{n} \right) -\int_0^1 f(x) \, dx \leqq \frac{1}{n} \{ f(1)-f(0) \} \]
(3)$f(x)=\log (1+x)$に対して(2)の結果を用いて,次の極限値を求めよ.
\[ \lim_{n \to \infty} \left[ \frac{1}{n} \log \left\{ \left( 1+\frac{1}{n} \right) \left( 1+\frac{2}{n} \right) \cdots \left( 1+\frac{n}{n} \right) \right\} \right] \]
スポンサーリンク

「結果」とは・・・

 まだこのタグの説明は執筆されていません。