タグ「結果」の検索結果

3ページ目:全91問中21問~30問を表示)
東邦大学 私立 東邦大学 2015年 第10問
次のデータは,ある高校$3$年生$9$人の$100$点満点の試験の結果である.
\[ 65,\ 83,\ 64,\ 69,\ 89,\ 68,\ 77,\ 70,\ 81 \]
データを順に,$x_1,\ x_2,\ x_3,\ \cdots,\ x_9$と表す.このとき,$\displaystyle \sum_{i=1}^9 (x_i-\theta)^2$を最小にする$\theta$の値は$[スセ]$である.また,$\displaystyle \sum_{i=1}^9 |x_i-\theta|$を最小にする$\theta$の値は$[ソタ]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
銀行口座(以降,口座)から$\mathrm{IC}$カードに金額を移転し,そのカードを用いて支払いをおこなうものとする.口座からカードに移転した金額を超過してさらに支払う必要が生じた場合,その分は銀行が自動的に立て替えて払うものとする.

このとき,口座からカードに金額を移転することに伴う利子収入の減少分,および銀行からの借入れに伴う利払い,そして口座からカードへの移転に伴う手数料,それらの合計$Z$を最小にする問題を考える.適当な仮定のもと,$Z$は独立変数$x,\ y$の関数として,つぎのように表わされる.
\[ Z=\frac{xy^2}{40A}+\frac{A^2-2xyA+x^2y^2}{30xA}+6x \]
ただし$(x,\ y)$は座標平面の第$1$象限の点であり,$A$は定数である.

(1)$x$を固定し,$Z$を$y$の関数と考えれば,その最小値は
\[ y=\frac{[$35$][$36$]}{[$37$][$38$]} \frac{A}{x} \]
のときである.
(2)$Z$に$(1)$の結果を代入し,$Z$を$x$のみの関数とみれば
\[ x=\sqrt{\frac{[$39$][$40$][$41$]}{[$42$][$43$][$44$]}A} \]
のとき$Z$は最小になる.
(3)以上から$Z$の最小値は
\[ \sqrt{\frac{[$45$][$46$][$47$]}{[$48$][$49$][$50$]}A} \]
である.
上智大学 私立 上智大学 2015年 第3問
次の問いに答えよ.

(1)$\displaystyle x=\frac{3+\sqrt{5}}{2}$とする.
\[ x^2+[ア]x+[イ]=0 \]
である.また,$y=x^2$とするとき,
\[ y^2+[ウ]y+[エ]=0 \]
である.$x^3=ax+b$となる整数$a,\ b$は
\[ a=[オ],\quad b=[カ] \]
である.
(2)$\theta$を実数とするとき,

$\cos 3\theta=[キ] \cos^3 \theta+[ク] \cos \theta,$
$\cos 5\theta=[ケ] \cos^5 \theta+[コ] \cos^3 \theta+[サ] \cos \theta$

である.
(3)$a>1$とする.数列

$a,\ 1 \quad \biggl| \quad a^2,\ a,\ 1 \quad \biggl| \quad a^3,\ a^2,\ a,\ 1 \quad \biggl| \quad \cdots$
第$1$群 \qquad 第$2$群 \qquad\qquad 第$3$群

において,例えば,第$3$群第$1$項は$a^3$であり,これは最初から数えて第$6$項である.$a^{12}$が初めて現れるのは最初から数えて第$[シ]$項である.また最初から数えて第$645$項は第$[ス]$群$[セ]$項である.
(4)次の$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$のように,$2$つの試行を連続して行った結果それぞれ事象$A$と事象$B$が起こった.$2$つの試行が独立なものの組み合わせとして最もふさわしいものを一つ選べ.

\mon[$\mathrm{a.}$] 赤い玉が$4$個,白い玉が$4$個入った袋がある.

$A:$玉を$1$個取り出したところ白だった.
$B:$最初の試行で取り出した玉を戻した後,$1$個取り出したところ白だった.

\mon[$\mathrm{b.}$] $30$人のクラスがある.

$A:$無作為に選んだ$\mathrm{X}$さんの誕生日が$1$月$1$日である.
$B:$その次に無作為に選んだ$\mathrm{Y}$さんの誕生日が$1$月$1$日である.

\mon[$\mathrm{c.}$] $5$つの扉があり,それぞれの後ろに猫が一匹いる.猫は黒猫が$3$匹,白猫が$2$匹であり,その場から動かないものとする.

$A:1$つ目の扉を開けたところ,黒猫がいた.
$B:1$つ目の扉を閉じた後,別の扉を開けたところ,白猫がいた.


\begin{screen}
選択肢:

\begin{tabular}{lll}
$1.$ \ $\mathrm{a}$ & $2.$ \ $\mathrm{b}$ & $3.$ \ $\mathrm{c}$ \\
$4.$ \ $\mathrm{ab}$ & $5.$ \ $\mathrm{ac}$ & $6.$ \ $\mathrm{bc}$ \\
$7.$ \ $\mathrm{abc}$ \phantom{AAAAA} & $8.$ \ なし \phantom{AAAAA} & \phantom{AAAAA} \\
\end{tabular}

\end{screen}
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
企業$\mathrm{X}$が$n$個の新製品を同時に開発しており,各新製品の開発に成功する確率は$\displaystyle \frac{1}{9}$である.すべての開発の結果が出た後に企業$\mathrm{X}$が存続できるための必要十分条件は,$n$個のうち$1$個以上の新製品の開発に成功していることである.ただし,各新製品の開発は独立な試行であるとする.企業$\mathrm{X}$が$n$個の新製品すべての開発に失敗する確率を$p_n$,また企業$\mathrm{X}$が存続できる確率を$q_n$とする.以下では,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.

(1)$p_n,\ q_n$をそれぞれ$n$を用いて表せ.
(2)$q_n \geqq 0.9$を満たす最小の自然数$n$を求めよ.
(3)$\displaystyle \frac{k}{1000}<q_{50}<\frac{k+1}{1000}$を満たす自然数$k$を求めよ.
日本女子大学 私立 日本女子大学 2015年 第3問
赤玉$1$個,白玉$1$個,青玉$1$個が入った袋から玉を$1$個取り出し,色を調べてからもとにもどす試行を$\mathrm{S}$とする.このとき,以下の問いに答えよ.

(1)試行$\mathrm{S}$を$3$回行った結果,取り出した玉の色が$2$種類である確率を求めよ.
(2)試行$\mathrm{S}$を$5$回行った結果,$5$回目に取り出した玉の色がちょうど$3$種類目である確率を求めよ.
(3)試行$\mathrm{S}$を$6$回行った結果,取り出した玉の色が$3$種類である確率を求めよ.
東京理科大学 私立 東京理科大学 2015年 第3問
座標平面上の放物線$\displaystyle C_1:y=2x^2+2x+\frac{1}{2}$と$\displaystyle C_2:y=-2x^2+2x+\frac{3}{2}$に対して次の問いに答えよ.なお,必要なら \ \tbox{\rule[-0.43em]{0pt}{1.6em}\hspace{0.33em} $1$\hspace{0.57em}} $(1)$の結果を使ってもよい.

(1)$C_1$上の点$\displaystyle \mathrm{A}(t,\ 2t^2+2t+\frac{1}{2})$と$C_2$上の点$\displaystyle \mathrm{B}(s,\ -2s^2+2s+\frac{3}{2})$に対し,$C_1$の点$\mathrm{A}$における接線の傾きと$C_2$の点$\mathrm{B}$における接線の傾きが等しくなるための必要十分条件を$t$と$s$の式で表せ.
(2)$(1)$の条件を満たすようなどんな実数$t,\ s$に対しても,直線$\mathrm{AB}$はある共通の点$\mathrm{M}$を通る.$\mathrm{M}$の座標を求めよ.
(3)$\mathrm{M}$を$(2)$で求めた点とする.$C_1$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(4)$\mathrm{M}$を$(2)$で求めた点とする.$C_2$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(5)$(1)$の条件を満たすような実数$t,\ s$に対して,線分$\mathrm{AB}$の長さがとり得る値の最小値を求めよ.
滋賀県立大学 公立 滋賀県立大学 2015年 第4問
次の問いに答えよ.

(1)双曲線$\displaystyle \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$($a$と$b$は正の実数)の$x>0$の部分を$H$とする.このとき,点$(-a,\ 0)$を通る傾き$t$の直線と$H$との交点を考えることにより,$H$上の点$(x,\ y)$の$x$と$y$をそれぞれ$t$の分数式で表せ.
(2)$(1)$のやり方を用いて,$y=\sqrt{x^2-1} (x>1)$で表される曲線を媒介変数$t$の分数式で表示せよ.
(3)$(2)$の結果を用いて不定積分$\displaystyle \int \frac{1}{\sqrt{x^2-1}} \, dx$を求めよ.
県立広島大学 公立 県立広島大学 2015年 第2問
次の条件によって定められる数列$\{a_n\}$がある.
\[ a_1=-1,\quad a_{n+1}=\frac{5a_n+9}{-a_n+11} \quad (n=1,\ 2,\ 3,\ \cdots) \]
次の問いに答えよ.

(1)$a_2,\ a_3,\ a_4$を求めよ.
(2)一般項$a_n$を推測し,その結果を数学的帰納法によって証明せよ.
(3)$a_n<3$を示せ.
(4)$a_n<a_{n+1}$を示せ.
(5)$a_n$が自然数となる$n$をすべて求めよ.
会津大学 公立 会津大学 2015年 第6問
$n$を自然数とするとき,以下の問いに答えよ.

(1)次の等式を示せ.
\[ \comb{n+2}{3}+\comb{n+2}{2}=\comb{n+3}{3} \]
(2)$(1)$の結果を利用して,数学的帰納法により,次の等式を証明せよ.
\[ \sum_{i=1}^n \comb{i+1}{2}=\comb{n+2}{3} \]
名古屋市立大学 公立 名古屋市立大学 2015年 第3問
自然数$n$に対して,$0$以上の実数を定義域とする$x$の関数$R_n(x)$を
\[ R_n(x)=\frac{1}{1+x^p}-\sum_{k=0}^{n-1}(-x^p)^k \]
とする.ただし,$p$は正の定数である.以下の問いに答えよ.

(1)次の不等式を示せ.
\[ |\int_0^1 R_n(x) \, dx|<\frac{1}{pn+1} \]
(2)次の等式を示せ.
\[ \int_0^1 \frac{dx}{1+x^p}=\sum_{k=0}^\infty \frac{(-1)^k}{pk+1} \]
(3)以上の結果を利用して次の無限級数の和を求めよ.

(i) $\displaystyle S_1=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots$

(ii) $\displaystyle S_2=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots$
スポンサーリンク

「結果」とは・・・

 まだこのタグの説明は執筆されていません。