タグ「結果」の検索結果

2ページ目:全91問中11問~20問を表示)
津田塾大学 私立 津田塾大学 2016年 第3問
$m$を自然数とし,整数$x,\ y$は$x^3+y^3=m$を満たすとする.

(1)$0<x^2-xy+y^2 \leqq m$が成り立つことを示せ.

(2)$\displaystyle y^2 \leqq \frac{4}{3}m$が成り立つことを示せ.

(3)$x^3+y^3=19$を満たす整数の組$(x,\ y)$をすべて求めよ.ただし,$(2)$の結果を利用してもよい.
広島国際学院大学 私立 広島国際学院大学 2016年 第3問
$100$人を対象として,パソコン,タブレットを使うかどうかをアンケート調査した結果,パソコンを使う人は$55$人,タブレットを使う人は$48$人,パソコン,タブレットのどちらも使う人は$25$人いた.このとき,パソコンもタブレットも使わない人は何人いるか求めなさい.
福岡大学 私立 福岡大学 2016年 第2問
次の$[ ]$をうめよ.
\begin{mawarikomi}{45mm}{

\begin{tabular}{|c|c|c|c|c|c|}
\hline
& $\mathrm{A}$ & $\mathrm{B}$ & $\mathrm{C}$ & $\mathrm{D}$ & $\mathrm{E}$ \\ \hline
$x$ & $7$ & $3$ & $5$ & $2$ & $3$ \\ \hline
$y$ & $4$ & $5$ & $7$ & $3$ & $6$ \\ \hline
\end{tabular}
}

(1)右の表は,ある中学校の$5$人の生徒$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$に$2$つの科目の小テストを行った結果である.$2$つの科目の得点をそれぞれ$x,\ y$とする.
このとき,$x$の分散を求めると$[ ]$であり,$x$と$y$の共分散を求めると$[ ]$である.
(2)三角形$\mathrm{OAB}$において辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$t:1-t$に内分する点を$\mathrm{Q}$とおく(ただし$0<t<1$とする).$\mathrm{AQ}$と$\mathrm{BP}$の交点を$\mathrm{R}$とおく.$\mathrm{BR}=\mathrm{RP}$となるとき,$\overrightarrow{\mathrm{OR}}$を,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて表すと,$\overrightarrow{\mathrm{OR}}=[ ]$となり,そのときの$t$の値を求めると$t=[ ]$となる.

\end{mawarikomi}
沖縄国際大学 私立 沖縄国際大学 2016年 第2問
以下の各問いに答えなさい.

(1)「実数」は,「実数」と「実数」に$3$つの演算(加法・減法・乗法)を行った場合,再び「実数」になる.同じように,同じ数の分類同士で$3$つの演算を行った結果が,再びその分類になるものを以下のなかからすべて選びなさい.

有理数,自然数,整数

(2)以下の$(ⅰ),\ (ⅱ)$についてその式を因数分解した式を答えなさい.

(i) $18x^2+9x-5$
(ii) $x^3+125$

(3)以下の$(ⅰ),\ (ⅱ)$の不等式の解を答えなさい.

(i) $|x+2|<5$
(ii) $|x+3|<2x+1$

(4)次の命題の対偶となる命題を答えなさい.

「$n+1$が偶数ならば,$n$は奇数」
会津大学 公立 会津大学 2016年 第2問
袋の中に,赤玉,青玉,白玉,黒玉が$1$つずつ,全部で$4$つ入っている.この袋から玉を$1$つ取り出して,また袋に戻す試行を繰り返す.座標平面上を動く点$\mathrm{P}$がはじめ原点$\mathrm{O}$にあり,試行のたびに,次の規則に従って動くものとする.
\begin{itemize}
赤玉が出たとき,$\mathrm{P}$は$x$軸の正の向きに$2$だけ進む.
青玉が出たとき,$\mathrm{P}$は$x$軸の正の向きに$1$だけ進む.
白玉が出たとき,$\mathrm{P}$は$y$軸の正の向きに$2$だけ進む.
黒玉が出たとき,$\mathrm{P}$は$y$軸の正の向きに$1$だけ進む.
\end{itemize}
このとき,以下の問いに答えよ.

(1)試行を$3$回繰り返した結果,$\mathrm{P}$が点$(2,\ 1)$にある確率を求めよ.
(2)試行を$3$回繰り返した結果,$\mathrm{P}$が$y$軸上にある確率を求めよ.
(3)試行を$5$回繰り返した結果,$\mathrm{OP}=5$となる確率を求めよ.
(4)試行を$5$回繰り返した結果,$\mathrm{P}$が不等式$6 \leqq x+y \leqq 8$の表す領域にある確率を求めよ.
札幌医科大学 公立 札幌医科大学 2016年 第3問
$2$種類の文字「$\mathrm{A}$」,「$\mathrm{B}$」を$1$つずつ左から右に書いていく.書かれる文字が$\mathrm{A}$か$\mathrm{B}$かは確率$\displaystyle \frac{1}{2}$で決まるものとする.しかし,次の$2$つのルールにより文字が消去されることがある:

\mon[$1.$] 右端の$\mathrm{A}$の右隣に$\mathrm{B}$が書かれる場合,その$\mathrm{B}$は確率$\displaystyle \frac{2}{3}$で消去される
\mon[$2.$] 右端の$\mathrm{B}$の左側に$\mathrm{A}$が$1$つ以上存在する場合,それらのうちでもっとも右にある$\mathrm{A}$を$\maruA$と呼ぶ.この状況で,右端の$\mathrm{B}$の右隣に$\mathrm{A}$が書かれる場合,確率$\displaystyle \frac{2}{3}$でその$\mathrm{A}$と$\maruA$より右側のすべての文字が消去される(ただし$\maruA$は消去されない).

上記$2$つのルールにあてはまらない場合は,消去される文字はないものとする.$n$文字を書いたときに,実際に残っている文字数を$a_n$とする.例えば,$3$文字を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{A}$の順に書いた場合の結果は「$\mathrm{ABA}$」,「$\mathrm{AA}$」,「$\mathrm{A}$」のいずれかとなる.

(1)$a_3=2$となる確率を求めよ.
(2)$a_4=1$となる確率を求めよ.
(3)$a_n=n$となる確率を$n$を用いて表せ.
東京大学 国立 東京大学 2015年 第4問
投げたとき表と裏の出る確率がそれぞれ$\displaystyle \frac{1}{2}$のコインを$1$枚用意し,次のように左から順に文字を書く.

コインを投げ,表が出たときは文字列$\mathrm{AA}$を書き,裏が出たときは文字$\mathrm{B}$を書く.さらに繰り返しコインを投げ,同じ規則に従って,$\mathrm{AA}$,$\mathrm{B}$をすでにある文字列の右側につなげて書いていく.
たとえば,コインを$5$回投げ,その結果が順に表,裏,裏,表,裏であったとすると,得られる文字列は,
\[ \mathrm{A} \ \mathrm{A} \ \mathrm{B} \ \mathrm{B} \ \mathrm{A} \ \mathrm{A} \ \mathrm{B} \]
となる.このとき,左から$4$番目の文字は$\mathrm{B}$,$5$番目の文字は$\mathrm{A}$である.

(1)$n$を正の整数とする.$n$回コインを投げ,文字列を作るとき,文字列の左から$n$番目の文字が$\mathrm{A}$となる確率を求めよ.
(2)$n$を$2$以上の整数とする.$n$回コインを投げ,文字列を作るとき,文字列の左から$n-1$番目の文字が$\mathrm{A}$で,かつ$n$番目の文字が$\mathrm{B}$となる確率を求めよ.
広島工業大学 私立 広島工業大学 2015年 第1問
次の問いに答えよ.

(1)$9$人が無記名で$3$人$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のうちの$1$人に必ず投票するとき,開票結果は何通りあるか求めよ.
(2)$y=\sin 2x$のグラフを$x$軸方向へ$a$だけ,$y$軸方向へ$b$だけ平行移動したら,$\displaystyle y=-\cos \left( 2x+\frac{\pi}{3} \right)-2$のグラフと一致した.定数$a,\ b$の値を求めよ.ただし,$0 \leqq a \leqq \pi$とする.
(3)$\triangle \mathrm{ABC}$の辺上に点$\mathrm{P}$がある.$\mathrm{A}(-8,\ 2)$,$\mathrm{B}(2,\ -3)$,$\mathrm{C}(2,\ 2)$のとき,原点$\mathrm{O}(0,\ 0)$と点$\mathrm{P}$との距離の最小値を求めよ.
広島工業大学 私立 広島工業大学 2015年 第9問
$30$人のクラスで$10$点満点のテストを行い,その結果は次の表の通りである.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
得点 & $0$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ & $9$ & $10$ & 計 \\ \hline
人数 & $0$ & $0$ & $2$ & $4$ & $5$ & $a$ & $b$ & $2$ & $3$ & $4$ & $3$ & $30$ \\ \hline
\end{tabular}

次の問いに答えよ.

(1)$a+b$の値を求めよ.
(2)得点の平均値が$6$点のとき,$(a,\ b)$を求めよ.
(3)得点の中央値が$5.5$点のとき,$(a,\ b)$を求めよ.
(4)得点の中央値が$6$点のとき,$(a,\ b)$を求めよ.
(5)得点の最頻値が$6$点のとき,$(a,\ b)$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$n$を自然数とする.表と裏が$\displaystyle\frac{1}{2}$の確率で出現するコインを$n$回繰り返し投げる試行をおこなう.各試行に対して$n$個の数$X_1,\ \cdots,\ X_n$をつぎのように定義する.
\[ X_i=\left\{ \begin{array}{ll}
X_{i-1}+1 & (i \text{回目の結果が表の場合}) \\
X_{i-1}+2 & (i \text{回目の結果が裏の場合})
\end{array} \right. \]
ただし$X_0=0$とする.$X_1,\ X_2,\ \cdots,\ X_n$のいずれかが値$k (1 \leqq k \leqq 2n)$と等しくなる確率を$P(n,\ k)$と記す.例えば,$n=1$ならば$\displaystyle P(1,\ 1)=\frac{1}{2}$,$\displaystyle P(1,\ 2)=\frac{1}{2}$となる.$n=2$ならば$\displaystyle P(2,\ 1)=\frac{1}{2}$,$\displaystyle P(2,\ 4)=\frac{[$1$]}{[$2$]}$となる.

$3 \leqq k \leqq n$とする.$X_i=k$となるのは,$X_{i-1}=k-1$で$i$回目の結果が表となるか,あるいは$X_{i-1}=k-2$で$i$回目の結果が裏となるかのいずれかの場合である.したがって
\[ P(n,\ k)=\frac{[$3$]}{[$4$]}P(n,\ k-1)+\frac{[$5$]}{[$6$]}P(n,\ k-2) \quad (3 \leqq k \leqq n) \]
が成り立つ.
いまコインを$10$回投げる試行を考える.このとき
\[ P(10,\ 2)=\frac{[$7$]}{[$8$]},\quad P(10,\ 5)=\frac{[$9$][$10$]}{[$11$][$12$]} \]
である.
スポンサーリンク

「結果」とは・・・

 まだこのタグの説明は執筆されていません。