タグ「組み合わせ」の検索結果

1ページ目:全14問中1問~10問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の問いに答えよ.

(1)整式$P(x)$は実数を係数にもつ$x$の$3$次式であり,$x^3$の係数は$1$である.$P(x)$を$x-7$で割ると$8$余り,$x-9$で割ると$12$余る.方程式$P(x)=0$は$a+bi$を解に持つ.$a,\ b$は$1$桁の自然数であり,$i$は虚数単位とする.
ただし$a,\ b$の組み合わせは,$2a+b$が連続する$2$つの整数の積の値と等しくなるもののうち,$a-b$が最大となるものとする.このとき,

(i) 整式$P(x)$を$(x-7)(x-9)$で割ると,余りは$[$1$]x-[$2$]$である.
(ii) $a=[$3$]$,$b=[$4$]$であり,方程式$P(x)=0$の実数解は$[$5$]$である.

(2)$xy$平面上に曲線$C_1:y=-x^2-x+8$がある.$C_1$上の動点$\mathrm{A}$を点$(1,\ 2)$に関して対称移動した点$\mathrm{B}$の軌跡を$C_2$とする.
$C_1$と$C_2$の$2$つの交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とし,また,$C_1,\ C_2$と直線$x=k$との交点をそれぞれ$\mathrm{R}$,$\mathrm{S}$とする.ただし,$k$は$\alpha<k<\beta$を満たす実数とする.このとき,

(i) $C_2$の方程式は$y=x^2-[$6$]x+[$7$]$である.

(ii) 三角形$\mathrm{QRS}$の面積は$\displaystyle k=\frac{[$8$]}{[$9$]}$で最大となる.


(3)$xy$平面上に,原点$\mathrm{O}$を中心とする単位円$C$と,$y$軸の正の部分を始線として点$\mathrm{O}$を中心に回転する$2$つの動径$L_1,\ L_2$がある.円$C$と$L_1,\ L_2$との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.動径$L_1,\ L_2$の表す角をそれぞれ$\theta_1,\ \theta_2$とおき,$\theta_1=2\pi t,\ \theta_2=-\pi t$とする.ただし$t$は,$t \geqq 0$を満たす実数である.このとき,

(i) 点$\mathrm{P}$と点$\mathrm{Q}$が一致する$t$のうち,$t=0$を除く最小の$t$の値は$\displaystyle \frac{[$10$]}{[$11$]}$である.

(ii) 点$\mathrm{P}$の$y$座標と点$\mathrm{Q}$の$y$座標の和の最小値は$\displaystyle \frac{[$12$][$13$]}{[$14$]}$である.


(4)直角三角形$\mathrm{AOB}$($\angle \mathrm{AOB}={90}^\circ$)に内接する半径$r$の円の中心を$\mathrm{P}$とする.辺$\mathrm{AB}$と円の接点を$\mathrm{Q}$とし,線分$\mathrm{AQ}$の長さを$a$,線分$\mathrm{BQ}$の長さを$b$とする.三角形$\mathrm{AOB}$に対して,自然数$l,\ m,\ n (n<m<l)$は,$l \overrightarrow{\mathrm{OP}}+m \overrightarrow{\mathrm{AP}}+n \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たす.このとき,

(i) 三角形$\mathrm{AOB}$の$3$辺の長さの合計は$[$15$]a+[$16$]b+[$17$]r$である.

(ii) $l=17$のとき,$m=[$18$][$19$]$,$n=[$20$]$であり,$\displaystyle \frac{a}{b}=\frac{[$21$]}{[$22$][$23$]}$である.
上智大学 私立 上智大学 2015年 第3問
次の問いに答えよ.

(1)$\displaystyle x=\frac{3+\sqrt{5}}{2}$とする.
\[ x^2+[ア]x+[イ]=0 \]
である.また,$y=x^2$とするとき,
\[ y^2+[ウ]y+[エ]=0 \]
である.$x^3=ax+b$となる整数$a,\ b$は
\[ a=[オ],\quad b=[カ] \]
である.
(2)$\theta$を実数とするとき,

$\cos 3\theta=[キ] \cos^3 \theta+[ク] \cos \theta,$
$\cos 5\theta=[ケ] \cos^5 \theta+[コ] \cos^3 \theta+[サ] \cos \theta$

である.
(3)$a>1$とする.数列

$a,\ 1 \quad \biggl| \quad a^2,\ a,\ 1 \quad \biggl| \quad a^3,\ a^2,\ a,\ 1 \quad \biggl| \quad \cdots$
第$1$群 \qquad 第$2$群 \qquad\qquad 第$3$群

において,例えば,第$3$群第$1$項は$a^3$であり,これは最初から数えて第$6$項である.$a^{12}$が初めて現れるのは最初から数えて第$[シ]$項である.また最初から数えて第$645$項は第$[ス]$群$[セ]$項である.
(4)次の$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$のように,$2$つの試行を連続して行った結果それぞれ事象$A$と事象$B$が起こった.$2$つの試行が独立なものの組み合わせとして最もふさわしいものを一つ選べ.

\mon[$\mathrm{a.}$] 赤い玉が$4$個,白い玉が$4$個入った袋がある.

$A:$玉を$1$個取り出したところ白だった.
$B:$最初の試行で取り出した玉を戻した後,$1$個取り出したところ白だった.

\mon[$\mathrm{b.}$] $30$人のクラスがある.

$A:$無作為に選んだ$\mathrm{X}$さんの誕生日が$1$月$1$日である.
$B:$その次に無作為に選んだ$\mathrm{Y}$さんの誕生日が$1$月$1$日である.

\mon[$\mathrm{c.}$] $5$つの扉があり,それぞれの後ろに猫が一匹いる.猫は黒猫が$3$匹,白猫が$2$匹であり,その場から動かないものとする.

$A:1$つ目の扉を開けたところ,黒猫がいた.
$B:1$つ目の扉を閉じた後,別の扉を開けたところ,白猫がいた.


\begin{screen}
選択肢:

\begin{tabular}{lll}
$1.$ \ $\mathrm{a}$ & $2.$ \ $\mathrm{b}$ & $3.$ \ $\mathrm{c}$ \\
$4.$ \ $\mathrm{ab}$ & $5.$ \ $\mathrm{ac}$ & $6.$ \ $\mathrm{bc}$ \\
$7.$ \ $\mathrm{abc}$ \phantom{AAAAA} & $8.$ \ なし \phantom{AAAAA} & \phantom{AAAAA} \\
\end{tabular}

\end{screen}
天使大学 私立 天使大学 2015年 第4問
次の問いに答えなさい.

(1)$\mathrm{A}$,$\mathrm{B}$の$2$人を含む$5$人でじゃんけんを$1$回行う.$5$人の手(グー・チョキ・パー)の出し方の組み合わせは,同様に確からしいとする.

(i) $\mathrm{A}$が$\mathrm{B}$に「グー」で勝つ確率は$\displaystyle \frac{\mkakko{$\mathrm{a}$}}{\mkakko{$\mathrm{b}$} \mkakko{$\mathrm{c}$} \mkakko{$\mathrm{d}$}}$である.ただし$\mkakko{$\mathrm{a}$}$は正の数である.
(ii) $\mathrm{A}$が$\mathrm{B}$に勝つ確率は$\displaystyle \frac{\mkakko{$\mathrm{e}$}}{\mkakko{$\mathrm{f}$} \mkakko{$\mathrm{g}$}}$である.ただし$\mkakko{$\mathrm{e}$}$は正の数である.

(2)$5$人の男性と$5$人の女性で,$2$人のグループを$5$組つくる.

(i) グループのつくり方は,全部で$\mkakko{$\mathrm{h}$} \mkakko{$\mathrm{i}$} \mkakko{$\mathrm{j}$}$通りある.
(ii) 組み合わせをクジで決めるとする.女性の入らない組が少なくとも$1$つできる確率は$\displaystyle \frac{\mkakko{$\mathrm{k}$} \mkakko{$\mathrm{l}$}}{\mkakko{$\mathrm{m}$} \mkakko{$\mathrm{n}$}}$である.ただし$\mkakko{$\mathrm{k}$}$は正の数である.
沖縄国際大学 私立 沖縄国際大学 2015年 第1問
以下の各問いに答えなさい.

(1)次の式を展開しなさい.

(i) $(x-1)(x-2)(x+2)(x+1)$
(ii) $(x+3)^2(x-3)^2$

(2)$m+n=1$となる整数$m$と自然数$n$の組み合わせを次の$\zenkakkoa$~$\zenkakkoki$からすべて選びなさい.
$\zenkakkoa m=1,\ n=0$ \qquad $\zenkakkoi m=0,\ n=1$ \qquad $\zenkakkou m=3,\ n=-2$
$\displaystyle \zenkakkoe m=-0.5,\ n=1.5$ \qquad $\displaystyle \zenkakkoo m=\frac{3}{5},\ n=\frac{2}{5}$ \qquad $\zenkakkoka m=-\sqrt{1},\ n=\sqrt{4}$
$\zenkakkoki m=-5,\ n=6$

(3)$\displaystyle -\frac{4x-1}{3} \leqq x+1$を解きなさい.

(4)$|x+6|>3x$を解きなさい.
松山大学 私立 松山大学 2014年 第2問
次の空所$[ア]$~$[タ]$を埋めよ.

赤玉が$5$個,青玉が$7$個,黄玉が$4$個入っている袋から,玉を同時に$3$個取り出した.

(1)玉の色の組み合わせは$[アイ]$通りである.
(2)取り出した$3$つの玉がすべて同じ色である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(3)取り出した$3$つの玉がすべて別の色である確率は$\displaystyle \frac{[カ]}{[キ]}$である.
(4)赤玉を$2$点,青玉を$1$点,黄玉を$0$点とするとき,合計点が$4$点となる確率は$\displaystyle \frac{[クケ]}{[コサシ]}$である.
(5)$(4)$のように点数をつけるとき,合計点の期待値は$\displaystyle \frac{[スセ]}{[ソタ]}$である.
北九州市立大学 公立 北九州市立大学 2014年 第1問
以下の問いの空欄$[ア]$~$[ス]$に適する数値,式などを記せ.

(1)直線$\displaystyle y=\frac{x}{\sqrt{3}}+1$と$x$軸の正の向きとのなす角は$[ア]$であり,この直線と放物線$\displaystyle y=\frac{x^2}{4}$の共有点の座標は$([イ],\ [ウ])$と$([エ],\ [オ])$である.
(2)$\triangle \mathrm{ABC}$において,$\displaystyle \frac{\sin A}{9}=\frac{\sin B}{7}=\frac{\sin C}{5}$が成り立つとき,この三角形の最も大きい角の余弦の値は$[カ]$である.この三角形の最も大きい辺の長さを$9$とすると,三角形の面積は$[キ]$である.
(3)同じ$2$つの箱と,同じ$4$つの球がある.$2$つの箱にすべての球を分配するときの組み合わせは$[ク]$通りである.また,大小の$2$つの箱と,$1$から$4$までの数が書かれた$4$つの球があるとき,すべての球を分配するときの組み合わせは$[ケ]$通りである.ただし,片方の箱のみに球が入っている場合も含む.
(4)$\displaystyle x=\frac{\sqrt{7}-\sqrt{3}}{\sqrt{7}+\sqrt{3}},\ y=\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}$のとき,$x^2+y^2$の値は$[コ]$,$x^3-y^3$の値は$[サ]$となる.
(5)大小の$2$個のさいころを投げ,出た目が同じ場合は$10$点,大のさいころの目のほうが大きい場合は$5$点,それ以外の場合には得点は得られないとするとき,点数を得られる目が出る確率は$[シ]$で,得点の期待値は$[ス]$点である.
北海道医療大学 私立 北海道医療大学 2013年 第3問
$1,\ 3,\ 5$の$3$つの数から重複を許して$3$つの数を選び,その$3$つの数を辺の長さとする三角形を作ろうとするとき,以下の問に答えよ.ただし,$3$つの数の組み合わせは$(1,\ 1,\ 3)$,$(1,\ 5,\ 5)$のように記すこと.

(1)$3$つの数を選ぶ組み合わせは何通りあるか.ただし,三角形ができない組み合わせも含むとする.
(2)正三角形ができる組み合わせを列挙せよ.
(3)正三角形ではない二等辺三角形ができる組み合わせを列挙せよ.
(4)三角形ができない組み合わせを列挙せよ.
名古屋市立大学 公立 名古屋市立大学 2013年 第2問
文字$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,数字$1,\ 2,\ 3$と書かれたカードをそれぞれ$1$枚ずつ,合計$6$枚を箱に入れる.箱から無作為にカードを$2$枚引いて,図のような列$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$行$1,\ 2,\ 3$とする$3 \times 3$のマス目に以下のルールに従って,石を置くか取り除く試行を行う.
(図は省略)
\begin{itemize}
引いた$2$枚のカードが文字同士,数字同士の組み合わせである場合何もしない.
引いた$2$枚のカードが文字と数字の組み合わせだった場合,もし,その文字と数字に対応するマス目に石が置かれていない場合,石を置く.もしそのマス目に石が置かれている場合,石を取り除く.
カードは試行ごとに箱に戻すとする.
\end{itemize}
例えば,下図の状態のあとカードを引いて,カードが$\mathrm{B}$,$1$の組み合わせの場合,$\mathrm{B}$列$1$行のマス目に石を置く.カードの組み合わせが$\mathrm{A}$,$2$の場合は,$\mathrm{A}$列$2$行のマス目には石が置かれているのでそれを取り除く.
(図は省略)

ただし,第$1$回目の試行を開始する前には,マス目には石は置かれていない.次の問いに答えよ.

(1)第$1$回目の試行のあと,石がマス目に置かれている確率を求めよ.
(2)第$2$回目の試行のあと,石がマス目に置かれている確率を求めよ.
(3)第$3$回目の試行のあと,マス目に置かれている石の数の期待値を求めよ.
茨城大学 国立 茨城大学 2011年 第3問
点Aを$(-2,\ 0)$,点Eを$(2,\ 0)$とする.3つの点B,C,Dは,$\text{AB}=\text{BC}=\text{CD}=\text{DE}$を満たし,かつ,直線ABと直線CDが直角に交わり,直線BCと直線DEが直角に交わる.点B,C,Dの位置を調べるために,$\overrightarrow{\mathrm{BS}}=\overrightarrow{\mathrm{CD}}$となるような点Sをとる.点Sの$y$座標を$s$とする.以下の各問に答えよ.

(1)ASとESの長さを比較し,点Sが満たす条件を求めよ.
(2)点Bが直線ASの上側にある場合を考える.$\overrightarrow{\mathrm{SB}}$と点Bの座標を$s$で表せ.$s$が変化するときに点Bが描く図形は何か.
(3)点Dが直線ESの上側にある場合を考える.$\overrightarrow{\mathrm{SD}}$と点Dの座標を$s$で表せ.$s$が変化するときに点Dが描く図形は何か.
(4)(2)かつ(3)の場合に点Cの座標を$s$で表せ.$s$が変化するときに点Cが描く図形は何か.
(5)(2)かつ(3)の場合で,5つの点A,B,C,D,Eが同一円周上ににあるような点B,C,Dの位置の組み合わせをすべて求めよ.
中央大学 私立 中央大学 2011年 第1問
次の各問いに答えよ.

(1)$xy=100$,$x>y$をみたす自然数$x,\ y$の組み合わせは何通りあるか.
(2)次の値を求めよ.
\[ \sum_{k=1}^{10} (2k^2-3k+5) \]
(3)$k$が定数のとき,$y=x^2-2kx+2k^2+3k-2$は放物線を表す.定数$k$をいろいろ変化させるとき,放物線の頂点はどのような曲線上を動いていくか.
(4)半径が$2t+1$の球の体積を$V(t)$とする.$V(t)$を$t$で微分した導関数を求めよ.
(5)$\log_{10}x=0.8$,$\log_{10}y=0.3$のとき,$\log_{10}x^2y^3$の値を求めよ.
(6)$1$枚の硬貨を$5$回投げたとき,表が$3$回出る確率を求めよ.
スポンサーリンク

「組み合わせ」とは・・・

 まだこのタグの説明は執筆されていません。