タグ「終了」の検索結果

8ページ目:全78問中71問~80問を表示)
大阪市立大学 公立 大阪市立大学 2011年 第4問
$N,\ a,\ b$は正の整数とする.箱の中に赤玉が$a$個,白玉が$b$個入っている.箱から無作為に$1$個の玉を取り出し,色を記録して箱に戻す.この操作を繰り返し,同じ色の玉が$2$回続けて出るか,または取り出す回数が$2N +2$になったら終了する.$n$回取り出して終わる確率を$P(n)$とし,$\displaystyle p = \frac{a}{a+b},\ q = \frac{b}{a+b},\ r = pq$とおく.次の問いに答えよ.

(1)$P(2j),\ P(2j +1) \ (j = 1,\ 2,\ \cdots,\ N)$および$P(2N +2)$を$r$を用いて表せ.
(2)偶数回取り出して終わる確率$\displaystyle Q = \sum_{j=1}^{N+1} P(2j)$について,$\displaystyle Q > \frac{1-2r}{1-r}$となることを示せ.
大阪市立大学 公立 大阪市立大学 2011年 第4問
$N,\ a,\ b$は正の整数とする.箱の中に赤玉が$a$個,白玉が$b$個入っている.箱から無作為に1個の玉を取り出し,色を記録して箱に戻す.この操作を繰り返し,同じ色の玉が2回続けて出るか,または取り出す回数が$2N +2$になったら終了する.$n$回取り出して終わる確率を$P(n)$とし,$\displaystyle p=\frac{a}{a+b},\ q =\frac{b}{a+b},\ r = pq$とおく.次の問いに答えよ.

(1)$P(2j),\ P(2j+1) \ (j =1,\ 2,\ \cdots,\ N)$および$P(2N +2)$を$r$を用いて表せ.
(2)$\displaystyle (1-r)\sum_{j=1}^N jr^{j-1}=\frac{1-r^N}{1-r}-Nr^N$を示せ.
(3)取り出す回数の期待値$\displaystyle m = \sum_{n=2}^{2N+2} nP(n)$について,$\displaystyle m<\frac{2+r}{1-r}$となることを示せ.
(4)上の期待値$m$について,$m<3$を示せ.
宮城大学 公立 宮城大学 2011年 第3問
$\mathrm{A}$,$\mathrm{B}$の$2$人が交互にさいころを投げ,出た目の数を自分の得点とする.初めに$\mathrm{A}$がさいころを投げ,自分の得点の合計が先に$6$以上になった方を勝ちとしてゲームを終了する.ただし,例外として次の$3$つのルールを定める.
\begin{itemize}
$\mathrm{A}$が$1$の目を出したときは$\mathrm{A}$の勝ちとしてゲームを終了する.
$\mathrm{A}$が$2$の目を出したときは$\mathrm{B}$の勝ちとしてゲームを終了する.
$\mathrm{B}$が$1$または$2$の目を出したときは$\mathrm{B}$の勝ちとしてゲームを終了する.
\end{itemize}
このとき次の問いに答えなさい.

(1)$\mathrm{A}$が$1$回目で勝つ確率を求めなさい.
(2)$2$回目で$\mathrm{B}$がさいころを投げてゲームが終了する確率を求めなさい.
(3)このゲームで$\mathrm{A}$が勝つ確率を求めなさい.
神戸大学 国立 神戸大学 2010年 第4問
$N$を自然数とする.赤いカード2枚と白いカード$N$枚が入っている袋から無作為にカードを1枚ずつ取り出して並べていくゲームをする.2枚目の赤いカードが取り出された時点でゲームは終了する.赤いカードが最初に取り出されるまでに取り出された白いカードの枚数を$X$とし,ゲーム終了時までに取り出された白いカードの総数を$Y$とする.このとき,以下の問に答えよ.

(1)$n=0,\ 1,\ \cdots,\ N$に対して,$X=n$となる確率$p_n$を求めよ.
(2)$X$の期待値を求めよ.
(3)$n=0,\ 1,\ \cdots,\ N$に対して,$Y=n$となる確率$q_n$を求めよ.
横浜国立大学 国立 横浜国立大学 2010年 第3問
$xy$平面上の点Aを次のルール($*$)に従って動かす試行を繰り返す.
\[ (*) \left\{
\begin{array}{l}
1 \text{個のさいころを投げ,} \\
(\text{A}) \; \text{1または2の目が出たとき,} \ x \text{軸の正の方向に1動かす.} \\
(\text{B}) \; \text{3または4の目が出たとき,} \ y \text{軸の正の方向に1動かす.} \\
(\text{C}) \; \text{5または6の目が出たとき,動かさない.}
\end{array}
\right. \]
Aは始め原点Oにある.直線$x+y=3$を$\ell$として,次の問いに答えよ.

(1)5回の試行後,Aが$(2,\ 1)$にある確率を求めよ.
(2)$n \geqq 3$に対し,$n$回の試行後,Aが$\ell$上にある確率を求めよ.
(3)Aが$\ell$上に来たとき,または(C)が合計2回生じたとき,試行を終了する.

(4)Aが$\ell$上に来て試行が終了する確率を求めよ.
(5)終了までの試行回数の期待値を求めよ.
福井大学 国立 福井大学 2010年 第1問
座標平面上に4点O$(0,\ 0)$,A$(4,\ 0)$,B$(4,\ 4)$,C$(0,\ 4)$をとり,正方形OABCを考える.点Bを出発点とする2つの動点P,Qが,次の規則に従って動くものとする.

1枚のコインを投げ,
表が出たときには,点Pは辺AB上を点Aの方向に1進み,点Qは動かない.
裏が出たときには,点Qは辺BC上を点Cの方向に1進み,点Pは動かない.

この試行を4回繰り返し,その結果できる三角形OPQの面積を得点とするゲームを行う.以下の問いに答えよ.

(1)ゲームの終了時に,点Pの座標が$(4,\ 1)$である確率を求めよ.
(2)このゲームの得点が8となる確率を求めよ.
(3)このゲームの得点の期待値を求めよ.
学習院大学 私立 学習院大学 2010年 第4問
袋の中に赤球$5$個と白球$4$個が入っている.この袋から球を$1$個ずつ取り出していき,赤,白どちらかの球が先に$3$個取り出されたところで終了する.ただし,取り出した球は袋に戻さない.終了時点で取り出されている球の総数を$X$とするとき,次の問いに答えよ.

(1)$X=5$となる確率を求めよ.
(2)$X$の期待値を求めよ.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)一般項が$a_n=2n+1$で与えられる数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$の初項から第$n$項までの和を$S_n$とするとき,$S_{10}=[ア]$であり,$S_n=9999$となるのは$n=[イ]$のときである.
(2)$A=\left( \begin{array}{rr}
1 & -3 \\
-2 & 3
\end{array} \right),\ E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$のとき,$A^2-4A=[ウ]$であり,$A^3-5A^2+A-E=[エ]$である.
(3)複素数$\alpha,\ \beta$が$\alpha^3+\beta^3=-2$,$\alpha\beta=1$を満たすとき,$\alpha+\beta=[オ]$であり,$\alpha^2+\beta^2=[カ]$である.
(4)関数$\displaystyle y=|\cos x|+2 \sin \frac{x}{2}$を考える.$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,$y$のとりうる値の範囲は$[キ]$である.$\displaystyle \frac{\pi}{2}<x \leqq \pi$のとき,$y$のとりうる値の範囲は$[ク]$である.
(5)$1$と書かれたカード,$2$と書かれたカード,$3$と書かれたカードがそれぞれ$1$枚ずつ入った袋がある.この袋からでたらめにカードを$1$枚取り出して,書かれた数字の数だけコインをもらい,カードを袋に戻すという試行を繰り返すゲームを行う.ゲームが終了するのは,試行を$2$回繰り返した後にそれまでにもらったコインの枚数の合計がちょうど$4$枚になったとき,または,そうならずに試行を$3$回繰り返したときのいずれかである.このゲームが終了したときに,それまでにもらったコインの枚数の合計が$4$枚である確率は$[ケ]$であり,$6$枚以上である確率は$[コ]$である.
スポンサーリンク

「終了」とは・・・

 まだこのタグの説明は執筆されていません。