タグ「終了」の検索結果

7ページ目:全78問中61問~70問を表示)
信州大学 国立 信州大学 2011年 第2問
硬貨$1$枚を投げたとき,表が出れば$2$点,裏が出れば$1$点を得るとする.硬貨を繰り返し投げて,合計点数が$10$点以上になったときに終了する.次の確率を求めよ.

(1)$7$回目に合計点数がちょうど$10$点となって終了する確率
(2)終了時の合計点数が$10$点である確率
福井大学 国立 福井大学 2011年 第3問
表の出る確率が$p$,裏の出る確率が$1-p$のコイン8枚と,1つの箱が用意されている.最初,箱には8枚のコインのうちの1枚が入っており,次の操作を繰り返し行う.

(操作) \quad 箱の中のコインをすべて取り出し同時に投げる.裏の出たコインはそのまま箱に戻す.表の出たコインはその枚数を数え,同数のコインを新たに追加して箱に戻す.

例えば,箱の中に3枚のコインがあり,それらを投げた結果,表が2枚,裏が1枚出たとすると,操作の結果,箱の中のコインは,2枚追加されて5枚になる.以下の問いに答えよ.

(1)2回目の操作の終了時,箱の中にあるコインが2枚である確率を$p$を用いて表せ.
(2)2回目の操作の終了時,箱の中にあるコインの枚数の期待値を$p$を用いて表せ.
(3)3回目の操作の終了時,箱の中にあるコインが6枚以下である確率を$p$を用いて表せ.
東京医科歯科大学 国立 東京医科歯科大学 2011年 第1問
ある硬貨を投げたとき,表と裏がそれぞれ確率$\displaystyle \frac{1}{2}$で出るとする.この硬貨を投げる操作を繰り返し行い,3回続けて表が出たときこの操作を終了する.自然数$n$に対し,

操作がちょうど$n$回目で終了となる確率を$P_n$
操作が$n$回以上繰り返される確率を$Q_n$

とする.このとき以下の各問いに答えよ.

(1)$P_3,\ P_4,\ P_5,\ P_6,\ P_7$をそれぞれ求めよ.
(2)$Q_6,\ Q_7$をそれぞれ求めよ.
(3)$n \geqq 5$のとき,$Q_n-Q_{n-1}$を$Q_{n-4}$を用いて表せ.
(4)$n \geqq 4$のとき,$\displaystyle Q_n < \left( \frac{3}{4} \right)^{\frac{n-3}{4}}$が成り立つことを示せ.
名古屋工業大学 国立 名古屋工業大学 2011年 第2問
大中小3枚のコインがある.サイコロを投げて次の規則でコインの表裏を反転させる試行を繰り返す.

\mon[(i)] 1または2の目が出たら,大コインを反転
\mon[(ii)] 3または4の目が出たら,中コインを反転
\mon[(iii)] 5または6の目が出たら,小コインを反転

3枚とも表になっている状態から始めるとき,次の問いに答えよ.

(1)サイコロを5回投げたとき,3枚とも裏である確率を求めよ.
(2)サイコロを5回投げたとき,初めて3枚とも裏になる確率を求めよ.
(3)コインが3枚とも裏になったところでサイコロ投げを終了することにする.最初の状態を除きコインが3枚とも表になることが一度もなく終了する確率を求めよ.
愛媛大学 国立 愛媛大学 2011年 第3問
自然数$n$を定数として,さいころを投げる次の競技を行う.この競技は,{\bf 試行}$1$と{\bf 試行}$2$からなる.競技者は,はじめに{\bf 試行}$1$を行う.
\begin{screen}

\mon[{\bf 試行}$1$] さいころを投げ,出た目の数を$X$とする.$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
$X$の値を得点として競技を終了する.
\mon[$\bullet$] $X=6$の場合
もし$n=1$ならば,$7$を得点として競技を終了する.
(★) \quad もし$n \geqq 2$ならば,{\bf 試行}$2$に進む.

\end{screen}
\begin{screen}

\mon[{\bf 試行}$2$] 競技者はさいころを投げる.
(★★) \quad 出た目の数を$X$とする.
$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
次のように定めた$P$を得点として競技を終了する.
\[ P=\left\{ \begin{array}{rl}
-1 & (X=1) \\
7 & (X=2,\ 3,\ 4) \\
13 & (X=5)
\end{array} \right. \]
\mon[$\bullet$] $X=6$の場合
もし競技開始から現時点までにさいころを投げた回数が$n$に等しいならば,$7$を得点として競技を終了する.
そうでないならば,続けてさいころを投げ,(★★)にもどる.

\end{screen}
以下の問いに答えよ.

(1)$n=1$として,{\bf 試行}$1$のみを行う.得点の期待値を求めよ.
(2)$n=4$とする.得点の期待値を求めよ.
(3)$n=30$とする.{\bf 試行}$1$を行い$X=6$になった.このとき,{\bf 試行}$1$の規則(★)を変更して,競技者は

\mon[(a)] 得点$7$を得て競技をただちに終了するか
\mon[(b)] 終了せずに{\bf 試行}$2$に進むか

どちらか一方を選択できるとする.どちらの選択をする方が得点の期待値が大きいか.
愛媛大学 国立 愛媛大学 2011年 第4問
自然数$n$を定数として,さいころを投げる次の競技を行う.この競技は,{\bf 試行}$1$と{\bf 試行}$2$からなる.競技者は,はじめに{\bf 試行}$1$を行う.
\begin{screen}

\mon[{\bf 試行}$1$] さいころを投げ,出た目の数を$X$とする.$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
$X$の値を得点として競技を終了する.
\mon[$\bullet$] $X=6$の場合
もし$n=1$ならば,$7$を得点として競技を終了する.
(★) \quad もし$n \geqq 2$ならば,{\bf 試行}$2$に進む.

\end{screen}
\begin{screen}

\mon[{\bf 試行}$2$] 競技者はさいころを投げる.
(★★) \quad 出た目の数を$X$とする.
$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
次のように定めた$P$を得点として競技を終了する.
\[ P=\left\{ \begin{array}{rl}
-1 & (X=1) \\
7 & (X=2,\ 3,\ 4) \\
13 & (X=5)
\end{array} \right. \]
\mon[$\bullet$] $X=6$の場合
もし競技開始から現時点までにさいころを投げた回数が$n$に等しいならば,$7$を得点として競技を終了する.
そうでないならば,続けてさいころを投げ,(★★)にもどる.

\end{screen}
以下の問いに答えよ.

(1)$n=1$として,{\bf 試行}$1$のみを行う.得点の期待値を求めよ.
(2)$n=4$とする.得点の期待値を求めよ.
(3)$n=30$とする.{\bf 試行}$1$を行い$X=6$になった.このとき,{\bf 試行}$1$の規則(★)を変更して,競技者は

\mon[(a)] 得点$7$を得て競技をただちに終了するか
\mon[(b)] 終了せずに{\bf 試行}$2$に進むか

どちらか一方を選択できるとする.どちらの選択をする方が得点の期待値が大きいか.
早稲田大学 私立 早稲田大学 2011年 第1問
$3$個の赤球と$4$個の白球が入った箱がある.この箱から$1$回に$1$つずつランダムに球を取り出すことを繰り返し,$k$回目に初めて赤球を取り出したときに終了する.ただし,取り出した球は箱に戻さない.

(1)$k=3$となる確率は$\displaystyle\frac{[ア]}{35}$である.
(2)$k$の期待値は$[イ]$である.
北海道文教大学 私立 北海道文教大学 2011年 第4問
赤玉$1$個,青玉$2$個,白玉$3$個が入っている袋から玉を$1$個取り出し,色を確認して袋に戻します.これを$2$回行いますが,$1$回目に赤玉を取り出したときは$1$回目で終了します.

青玉を取り出したときは賞金$500$円,白玉を取り出したときは賞金$300$円を獲得します.しかし,赤玉を取り出したときはそれまでに得た賞金はすべて没収されます.このとき,以下の問いに答えなさい.

(1)$1$回目の試行で終了する確率を求めなさい.
(2)賞金が$0$円になる確率を求めなさい.
(3)賞金の期待値を求めなさい.
立教大学 私立 立教大学 2011年 第2問
袋に赤玉が$1$個,白玉が$2$個の合計$3$個の玉が入っている.袋から玉$1$個を取り出し,玉の色を確認し,また袋に戻す,という作業を$2$回行い,これを$1$回の試行と考える.この試行を使って,$\mathrm{A}$君と$\mathrm{B}$君の$2$人が以下のようなゲームをすることにした.
\begin{itemize}
取り出した玉の色の$1$番目が白,$2$番目が赤であれば,$\mathrm{A}$君が勝ち抜けとなり,
取り出した玉の色の$1$番目が赤,$2$番目が白であれば,$\mathrm{B}$君が勝ち抜けとなり,
取り出した玉の色が$2$回とも同じ色であれば,引き分けとし,試行を続ける.
\end{itemize}
また,どちらか$1$人が勝ち抜けた後も,同様に玉を$2$回出し入れする試行を続け,以下の場合にゲームを終了させることにした.
\begin{itemize}
残った$1$人が$\mathrm{A}$君のとき,取り出した玉の色の$1$番目が白,$2$番目が赤である場合.
残った$1$人が$\mathrm{B}$君のとき,取り出した玉の色の$1$番目が赤,$2$番目が白である場合.
\end{itemize}
このとき,次の問に答えよ.

(1)$1$回目の試行で,$\mathrm{A}$君が勝ち抜ける確率,$\mathrm{B}$君が勝ち抜ける確率,引き分けになる確率をそれぞれ求めよ.
(2)$3$回目の試行でゲームが終了する確率を求めよ.
(3)$\mathrm{A}$君のほうが早く勝ち抜けし,その後,$n$回目の試行で$\mathrm{B}$君がゲームを終了させる確率を$n$を用いて表せ.ただし,$n \geqq 2$とし,$n$には$\mathrm{A}$君が勝ち抜けるまでの試行の回数も含むものとする.
立教大学 私立 立教大学 2011年 第2問
$\mathrm{A}$と$\mathrm{B}$の$2$名が次のようなルールのゲームを行った.

$\mathrm{A}$と$\mathrm{B}$で同時にサイコロを振り,偶数が出た場合は得点を$1$とし,奇数が出た場合は得点を$0$とする.
それぞれが$5$回サイコロを振り終わった時点で,より多くの得点をあげたものを勝者とし,得点が同じ場合は引き分けとする.
このとき,次の問に答えよ.

(1)$\mathrm{A}$の得点が$0$点かつ$\mathrm{B}$の得点が$1$点という経過の後で,終了時に$\mathrm{A}$の得点が$4$点である場合,得点の取り方は何通りあるか.
(2)$\mathrm{A}$と$\mathrm{B}$が引き分ける確率を求めよ.
(3)$\mathrm{A}$が勝利する確率を求めよ.
スポンサーリンク

「終了」とは・・・

 まだこのタグの説明は執筆されていません。