タグ「級数」の検索結果

1ページ目:全9問中1問~10問を表示)
自治医科大学 私立 自治医科大学 2016年 第20問
初項$1$,公比$x(1-x)$の無限等比級数が収束するための$x$のとりうる範囲は,$a<x<b$となる.$5 |a+b|$の値を求めよ.
金沢大学 国立 金沢大学 2015年 第4問
$a>1$とする.無限等比級数
\[ a+ax(1-ax)+ax^2(1-ax)^2+ax^3(1-ax)^3+\cdots \]
が収束するとき,その和を$S(x)$とする.次の問いに答えよ.

(1)この無限等比級数が収束するような実数$x$の値の範囲を求めよ.また,そのときの$S(x)$を求めよ.
(2)$x$が$(1)$で求めた範囲を動くとき,$S(x)$のとり得る値の範囲を求めよ.
(3)$\displaystyle I(a)=\int_0^{\frac{1}{a}} S(x) \, dx$とおくとき,極限値$\displaystyle \lim_{a \to \infty} I(a)$を求めよ.
金沢工業大学 私立 金沢工業大学 2015年 第2問
次の問いに答えよ.

(1)実数$x$について,等式
\[ \sin x-\sqrt{3} \cos x=[ス] \sin \left( x-\frac{\pi}{[セ]} \right) \]
が成り立つ.
(2)$0 \leqq x<2\pi$を満たす実数$x$について,無限等比級数
\[ 1+(\sin x-\sqrt{3} \cos x)+{(\sin x-\sqrt{3} \cos x)}^2+{(\sin x-\sqrt{3} \cos x)}^3+\cdots \]
は$\displaystyle \frac{\pi}{[ソ]}<x<\frac{\pi}{[タ]},\ \frac{[チ]}{[ツ]} \pi<x<\frac{[テ]}{[ト]} \pi$で収束し,その和は
\[ \frac{1}{1-[ナ] \sin \left( x-\displaystyle\frac{\pi}{[ニ]} \right)} \]
である.
広島市立大学 公立 広島市立大学 2014年 第1問
次の問いに答えよ.

(1)次の関数の導関数を求めよ.

(i) $\displaystyle y=\frac{x}{1+x+x^2}$

(ii) $y=(x^2+2x)e^{-x}$

(2)次の不定積分を求めよ.

(i) $\displaystyle \int x^2 \log x \, dx$

(ii) $\displaystyle \int \frac{\cos x}{\cos^2 x+2 \sin x-2} \, dx$

(3)$x>0$とする.無限等比級数
\[ 1+\log x+(\log x)^2+\cdots +(\log x)^n+\cdots \]
が収束するような$x$の値の範囲を求めよ.
宇都宮大学 国立 宇都宮大学 2012年 第6問
関数$y=e^{-x}$のグラフを$C$とする.$C$上の点P$(t,\ e^{-t})$における接線と$x$軸との交点をQ$(u,\ 0)$とする.$C$上の点$(u,\ e^{-u})$をRとするとき,次の問いに答えよ.

(1)$u$を$t$の式で表せ.
(2)線分PQ,線分QRと$C$で囲まれた部分を図形Aとする.図形Aを$x$軸のまわりに1回転してできる立体の体積$V$を$t$の式で表せ.
(3)(1)の$u$を$t$の関数とみて$u(t)$と表す.数列$\{t_n\}$を$t_1=0,\ t_{n+1}=u(t_n) \ (n=1,\ 2,\ \cdots)$と定義するとき,一般項$t_n$を求めよ.
(4)(2)の$V$を$t$の関数とみて$V(t)$と表し,(3)の$t_n$を用いて$V_n=V(t_n) \ (n=1,\ 2,\ \cdots)$とおく.数列$\{V_n\}$は等比数列であることを示し,無限等比級数
\[ V_1+V_2+\cdots +V_n+\cdots \]
の収束,発散を調べ,収束する場合は,その和を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$1$枚の硬貨をくり返し投げるゲームを行う.このゲームを,表がちょうど$4$回出たところ,または,裏がちょうど$4$回出たところで終了することにする.ただし,硬貨を投げたとき,表が出る確率と裏が出る確率はいずれも$\displaystyle \frac{1}{2}$である.

(i) 硬貨を$k$回投げたところで終了する確率を$p_k$とすると,
\[ p_4=\frac{[ア]}{[イ]},\quad p_5=\frac{[ウ]}{[エ]},\quad p_7=\frac{[オ]}{[カ][キ]} \]
である.
(ii) このゲームが終了するまでに硬貨を投げる回数の期待値は
\[ \frac{[ク][ケ]}{[コ][サ]} \]
である.

(2)$0^\circ \leqq \theta \leqq 180^\circ$の$\theta$に対して,$x$に関する$2$次方程式
\[ x^2+(\sqrt{2} \sin 2\theta)x+2 \cos \theta=0 \]
を考える.

(i) この方程式が異なる$2$つの実数解をもつのは,
\[ [ア][イ]^\circ<\theta \leqq [ウ][エ][オ]^\circ \]
のときである.

以下,この方程式が異なる$2$つの実数解をもつ場合について考え,この$2$つの実数解を$\alpha,\ \beta$とする.

(ii) 無限等比級数
\[ 1+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^2+\cdots +\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^n+\cdots \]
が収束するのは,
\[ [カ][キ][ク]^\circ<\theta \leqq [ケ][コ][サ]^\circ \]
のときである.
(iii) 無限等比級数
\[ 1+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^2+\cdots +\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^n+\cdots \]
が収束して,その和が$2-\sqrt{2}$となるのは,
\[ \theta=[シ][ス][セ]^\circ \]
のときである.

(3)$\triangle \mathrm{OAB}$において,辺$\mathrm{AB}$を$2:1$の比に内分する点を$\mathrm{C}$($\mathrm{AC}:\mathrm{CB}=2:1$),線分$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{D}$($\mathrm{OD}:\mathrm{DC}=1:2$)とする.辺$\mathrm{OA}$上に点$\mathrm{P}$を,辺$\mathrm{OB}$上に点$\mathrm{Q}$を,線分$\mathrm{PQ}$が点$\mathrm{D}$を通るようにとる.

(i) $\displaystyle \frac{\mathrm{OA}}{\mathrm{OP}}+2 \times \frac{\mathrm{OB}}{\mathrm{OQ}}=[ア]$である.


以下,$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\angle \mathrm{AOB}=60^\circ$とする.


(ii) $\mathrm{OP}=1$のとき,$\triangle \mathrm{OPQ}$の面積は
\[ \frac{[イ]}{[ウ][エ]} \times \sqrt{[オ]} \]
である.
(iii) 線分$\mathrm{OP}$の長さと線分$\mathrm{OQ}$の長さの和$\mathrm{OP}+\mathrm{OQ}$がもっとも小さくなるように点$\mathrm{P}$,$\mathrm{Q}$をとるとき,
\[ \mathrm{OP}=\frac{[カ]+[キ] \sqrt{[ク]}}{[ケ]} \]
である.このとき,
\[ \mathrm{OP}+\mathrm{OQ}=\frac{[コ]+[サ] \sqrt{[シ]}}{[ス]} \]
である.
宇都宮大学 国立 宇都宮大学 2011年 第5問
座標平面上の直線$y=mx \ (m>0)$を$\ell$とする.点$(1,\ 0)$を$\mathrm{P}_1$とし,$\mathrm{P}_1$から$\ell$に下ろした垂線の足を$\mathrm{Q}_1$,$\mathrm{Q}_1$から$x$軸に下ろした垂線の足を$\mathrm{P}_2$とする.以下同様に$\mathrm{P}_n \ (n=1,\ 2,\ \cdots)$から$\ell$に下ろした垂線の足を$\mathrm{Q}_n$,$\mathrm{Q}_n$から$x$軸に下ろした垂線の足を$\mathrm{P}_{n+1}$とする.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{P}_1 \mathrm{Q}_1 \mathrm{P}_2$の面積$S_1$を$m$を用いて表せ.
(2)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n+1} \ (n=1,\ 2,\ \cdots)$の面積を$S_n$とするとき,級数$\displaystyle \sum_{n=1}^\infty S_n$の和$S$を$m$を用いて表せ.
(3)(2)における$S$が最大になる$m$と,そのときの$S$の値を求めよ.
奈良教育大学 国立 奈良教育大学 2011年 第1問
以下の設問に答えよ.

(1)初項$a$,公比$r$の無限等比級数は$|\,r\,|<1$のとき収束し,その和が$\displaystyle \frac{a}{1-r}$となることを示せ.
(2)座標平面上で,動点Pが点$(1,\ 1)$から$x$軸の負の向きに1だけ進み,次に$y$軸の負の向きに$\displaystyle \frac{1}{3}$だけ進み,次に$x$軸の負の向きに$\displaystyle \frac{1}{3^2}$だけ進み,次に$y$軸の負の向きに$\displaystyle \frac{1}{3^3}$だけ進む.以下,動点Pがこのような運動を続けるとき,動点Pが限りなく近づく点の座標を求めよ.
九州大学 国立 九州大学 2010年 第3問
$xy$平面上に曲線$\displaystyle y =\frac{1}{x^2}$を描き,この曲線の第1象限内の部分を$C_1$,第2象限内の部分を$C_2$と呼ぶ.$C_1$上の点P$_1 \displaystyle \left( a,\ \frac{1}{a^2} \right)$から$C_2$に向けて接線を引き,$C_2$との接点をQ$_1$とする.次に点Q$_1$から$C_1$に向けて接線を引き,$C_1$との接点をP$_2$とする.次に点P$_2$から$C_2$に向けて接線を引き,接点をQ$_2$とする.以下同様に続けて,C$_1$上の点列P$_n$と$C_2$上の点列Q$_n$を定める.このとき,次の問いに答えよ.

(1)点Q$_1$の座標を求めよ.
(2)三角形P$_1$Q$_1$P$_2$の面積$S_1$を求めよ.
(3)三角形P$_n$Q$_n$P$_{n+1} \ (n = 1,\ 2,\ 3,\ \cdots)$の面積$S_n$を求めよ.
(4)級数$\displaystyle \sum_{n=1}^{\infty} S_n$の和を求めよ.
スポンサーリンク

「級数」とは・・・

 まだこのタグの説明は執筆されていません。