タグ「範囲」の検索結果

99ページ目:全1424問中981問~990問を表示)
関西大学 私立 関西大学 2012年 第3問
関数$f(x)=|x(x+2)|$のグラフを$C$とする.次の$[ ]$をうめよ.

(1)$k$を定数とし,直線$y=x+k$を$\ell$とする.$C$と$\ell$が共有点を持たないのは,$k$の値が$[$①$]$の範囲のときである.共有点が$1$個であるのは,$k$の値が$[$②$]$のときである.共有点が$2$個であるのは,$k$の値が$[$③$]$の範囲のときであり,共有点が$3$個であるのは,$k$の値が$[$④$]$のときであり,共有点が$4$個であるのは,$k$の値が$[$⑤$]$の範囲のときである.
(2)$C$と直線$y=1$とで囲まれる部分の面積を$S$とするとき,$S$の値は$S=[$⑥$](\sqrt{2}-1)$である.
関西大学 私立 関西大学 2012年 第3問
次の$[ ]$を数値でうめよ.

放物線$y=ax^2+bx+c$の頂点の$x$座標は$\displaystyle \frac{11}{12}$であり,この放物線は$x$座標が$1$の点で直線$\displaystyle y=\frac{x}{3}+1$に接している.このとき,$a=[$①$]$,$b=[$②$]$,$c=[$③$]$である.この$a,\ b,\ c$に対し,$f(x)$を
\[ f(x)=\left\{ \begin{array}{lll}
ax^2+bx+c & & x \leqq 1 \\ \\
\displaystyle \frac{x}{3}+1 & & x>1
\end{array} \right. \]
と定め
\[ F(t)=\int_t^{t+1} f(x) \, dx \]
とおく.このとき,$F(t)$は$0 \leqq t \leqq 1$である$t$に対し
\[ F(t)=[$④$]t^3+[$⑤$]t^2-[$⑥$]t+\frac{11}{6} \]
と表される.$t$が$0 \leqq t \leqq 1$の範囲を動くとき,$F(t)$の値が最小になるのは$t=[$④chi$]$のときである.
広島修道大学 私立 広島修道大学 2012年 第3問
$r$を正の定数とするとき,次の各問に答えよ.

(1)直線$x+y=3$と円$x^2+y^2=r^2$が共有点をもつような$r$の範囲を求めよ.
(2)直線$x+y=3$と円$x^2+y^2=r^2$が共有点$\mathrm{A}$,$\mathrm{B}$をもち,$\mathrm{AB}=1$となる$r$の値を求めよ.
(3)実数$x,\ y$が不等式$x+y \geqq 3$を満たすとき,$x^2+y^2+2x+2y$の最小値を求めよ.
広島修道大学 私立 広島修道大学 2012年 第2問
次の問に答えよ.

(1)$0 \leqq \theta<\pi$のとき,次の連立不等式を解け.
\[ \left\{ \begin{array}{l}
\cos 2\theta>\sin \theta \\
\displaystyle \sin 2\theta<\frac{1}{\sqrt{2}}
\end{array} \right. \]
(2)$a,\ b$を定数とし,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$とするとき,次の問に答えよ.

(i) 方程式$\sin^2 x+\sin x+a=0$が解をもつような$a$の範囲を求めよ.
(ii) 方程式$\sin^2 x-\sin x+b=0$が解をもつような$b$の範囲を求めよ.
酪農学園大学 私立 酪農学園大学 2012年 第1問
次の各問いに答えよ.

(1)$(xy+1)(x+1)(y+1)+xy$を因数分解せよ.
(2)$\displaystyle \sin \theta+\cos \theta=\frac{3}{5} (0^\circ \leqq \theta \leqq 180^\circ)$のとき,$\sin \theta \cos \theta$の値を求めよ.

(3)$\displaystyle \frac{2 \sqrt{7}}{\sqrt{5}+1}-\frac{\sqrt{5}}{\sqrt{7}+\sqrt{5}}$の分母を有理化して簡単にせよ.

(4)$8$個の異なる荷物を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人に分けるとき,$\mathrm{A}$に$3$個,$\mathrm{B}$に$2$個,$\mathrm{C}$に$3$個のように分ける方法は何通りあるか.
(5)方程式$x^2+(2a+1)x+a+1=0$が実数解をもつように,定数$a$の値の範囲を求めよ.
(6)$2$次関数$y=x^2-2mx+3m$の最小値を$k$とするとき,$k$の最大値とそのときの$m$の値を求めよ.
北海道医療大学 私立 北海道医療大学 2012年 第3問
関数$f(x)=|x^2-4|$と$y$軸上の点$\mathrm{C}(0,\ 8)$を通る傾きが$k$である直線$\ell$について,以下の問に答えよ.ただし,$k$は定数とする.

(1)直線$\ell$の方程式を$k$を用いて表せ.

(2)$\displaystyle S(a)=\int_{-a}^a f(x) \, dx$とするとき,$S(2)$と$S(3)$を求めよ.

(3)$k=0$であるとき,直線$\ell$と関数$f(x)$で囲まれる部分の面積を求めよ.
(4)$k=4$であるとき,直線$\ell$と関数$f(x)$で囲まれる部分の面積を求めよ.
(5)$k$が範囲$0<k<4$にあるときの直線$\ell$と関数$f(x)$で囲まれる部分の面積を$k$を用いて表せ.
北海道医療大学 私立 北海道医療大学 2012年 第1問
以下の問に答えよ.

(1)$2$次関数$\displaystyle y=-\frac{3}{2}x^2+5x-3 (-1 \leqq x \leqq 2)$の最大値を求めよ.
(2)$2$次方程式$\displaystyle x^2+kx+k^2+\frac{7}{2}k-6=0$が異なる$2$つの実数解を持つとき,定数$k$の値の範囲は$A<k<B$のようになる.$A,\ B$の値を求めよ.

(3)式$\displaystyle \frac{\sqrt{5}-\sqrt{2}}{\sqrt{7}+\sqrt{5}+\sqrt{2}}$の分母を有理化すると,$\displaystyle \frac{A \sqrt{10}+B \sqrt{35}+C \sqrt{14}}{20}$となるという.$A,\ B,\ C$の値を求めよ.
(4)不等式$3 |x+3|>4+x$の解は,$x<A,\ B<x$のようになる.$A,\ B$の値を求めよ.
(5)$2$つの放物線$y=2x^2-4x+7$と$y=-3x^2+8x+6$の$2$つの共有点と,点$(3,\ 5)$を通る放物線の方程式は,$y=Ax^2+Bx+C$となる.定数$A,\ B,\ C$の値を求めよ.
北海道医療大学 私立 北海道医療大学 2012年 第1問
以下の問に答えよ.

(1)$2$次関数$\displaystyle y=-\frac{3}{2}x^2+5x-3 (-1 \leqq x \leqq 2)$の最大値を求めよ.
(2)$2$次方程式$\displaystyle x^2+kx+k^2+\frac{7}{2}k-6=0$が異なる$2$つの実数解を持つとき,定数$k$の値の範囲は$A<k<B$のようになる.$A,\ B$の値を求めよ.

(3)式$\displaystyle \frac{\sqrt{5}-\sqrt{2}}{\sqrt{7}+\sqrt{5}+\sqrt{2}}$の分母を有理化すると,$\displaystyle \frac{A \sqrt{10}+B \sqrt{35}+C \sqrt{14}}{20}$となるという.$A,\ B,\ C$の値を求めよ.
(4)不等式$3 |x+3|>4+x$の解は,$x<A,\ B<x$のようになる.$A,\ B$の値を求めよ.
(5)$2$つの放物線$y=2x^2-4x+7$と$y=-3x^2+8x+6$の$2$つの共有点と,点$(3,\ 5)$を通る放物線の方程式は,$y=Ax^2+Bx+C$となる.定数$A,\ B,\ C$の値を求めよ.
北海道医療大学 私立 北海道医療大学 2012年 第2問
変数$\theta$の関数$f(\theta)=5 \sin^2 \theta+m \cos \theta-3$について,以下の問に答えよ.ただし,$m$は定数とする.

(1)$\cos \theta=t$とおいて,関数$f(\theta)$を$t$の関数として表したものを$g(t)$とおくとき,$g(t)$を求めよ.
(2)関数$g(t)$において定数$m$を$1$とする.

(i) 変数$\theta$が$0^\circ \leqq \theta \leqq 180^\circ$の範囲にあるとき,関数$g(t)$の最大値と最小値を求めよ.
(ii) 変数$\theta$が$90^\circ \leqq \theta \leqq 180^\circ$の範囲にあるとき,方程式$g(t)=0$を解け.

(3)変数$\theta$が$0^\circ \leqq \theta \leqq 180^\circ$の範囲にあるとき,関数$g(t)$の最大値を$m$を用いて表せ.
(4)変数$\theta$が$0^\circ \leqq \theta \leqq 180^\circ$の範囲にあるとき,方程式$f(\theta)=0$が異なる$2$個の解を持つための$m$の値の範囲を求めよ.
北星学園大学 私立 北星学園大学 2012年 第1問
$x$の$2$次不等式を
\[ \begin{array}{lll}
x^2+2x-2<0 & & \cdots\cdots① \\
x^2-2ax+a^2-1>0 & & \cdots\cdots②
\end{array} \]
とする.以下の問に答えよ.

(1)$①$を解け.
(2)$②$を解け.
(3)$①$を満たす$x$の集合を$A$,$②$を満たす$x$の集合を$B$とする.$A \subset B$であるとき,$a$の値の範囲を求めよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。