「範囲」について
タグ「範囲」の検索結果
(97ページ目:全1424問中961問~970問を表示) 私立 龍谷大学 2012年 第2問
つぎの問いに答えなさい.
(1)$3$次方程式$x^3-6x+5=0$を解きなさい.
(2)$3$次方程式$x^3-6x+k=0$が$3$つの相異なる実数解を持つための定数$k$の値の範囲を求めなさい.
(1)$3$次方程式$x^3-6x+5=0$を解きなさい.
(2)$3$次方程式$x^3-6x+k=0$が$3$つの相異なる実数解を持つための定数$k$の値の範囲を求めなさい.
私立 龍谷大学 2012年 第4問
$0 \leqq x \leqq 2\pi$の範囲で関数
\[ f(x)=x+1-\cos x+\sqrt{3} \sin x \]
を考える.
(1)$f(x)$の極値を求め,$y=f(x)$のグラフを描きなさい.
(2)曲線$y=f(x)$,$x$軸,直線$x=2\pi$で囲まれた部分の面積を求めなさい.
\[ f(x)=x+1-\cos x+\sqrt{3} \sin x \]
を考える.
(1)$f(x)$の極値を求め,$y=f(x)$のグラフを描きなさい.
(2)曲線$y=f(x)$,$x$軸,直線$x=2\pi$で囲まれた部分の面積を求めなさい.
私立 学習院大学 2012年 第3問
$a$を実数とする.方程式
\[ \cos^2 x-2a \sin x-a+3=0 \]
の解で$0 \leqq x<2\pi$の範囲にあるものの個数を求めよ.
\[ \cos^2 x-2a \sin x-a+3=0 \]
の解で$0 \leqq x<2\pi$の範囲にあるものの個数を求めよ.
私立 学習院大学 2012年 第3問
$p$を定数として,関数$f(x)$を
\[ f(x)=e^x-\left( 1+\frac{1}{2}x \right) (1+px) \]
と定める.
(1)$p=0$のとき,$x \geqq 0$ならば$f(x) \geqq 0$であることを示せ.
(2)「$x \geqq 0$ならば$f(x) \geqq 0$」が成り立つような定数$p$の取り得る値の範囲を求めよ.
\[ f(x)=e^x-\left( 1+\frac{1}{2}x \right) (1+px) \]
と定める.
(1)$p=0$のとき,$x \geqq 0$ならば$f(x) \geqq 0$であることを示せ.
(2)「$x \geqq 0$ならば$f(x) \geqq 0$」が成り立つような定数$p$の取り得る値の範囲を求めよ.
私立 学習院大学 2012年 第2問
$0 \leqq t<2\pi$に対して,$2$次方程式
\[ x^2+(\sin t-2)x+\sin 2t-\sin t=0 \]
を考える.
(1)すべての$t$に対して方程式は相異なる$2$つの実数解をもつことを示せ.
(2)方程式が$2$つの正の実数解をもつための$t$の範囲を求めよ.
\[ x^2+(\sin t-2)x+\sin 2t-\sin t=0 \]
を考える.
(1)すべての$t$に対して方程式は相異なる$2$つの実数解をもつことを示せ.
(2)方程式が$2$つの正の実数解をもつための$t$の範囲を求めよ.
私立 上智大学 2012年 第4問
$\log x$は自然対数,$e$は自然対数の底を表す.
(1)$a,\ b$は$e^{-1}<a<1,\ b>0$を満たす実数とする.曲線$C:y=\log x$と直線$\ell:y=ax+b$とが接しているとすると,
\[ b=[モ] \log a+[ヤ] \]
が成り立つ.このとき,曲線$C$と$3$つの直線$\ell$,$x=1$,$x=e$とで囲まれた図形の面積を$S(a)$とする.$a$が$e^{-1}<a<1$の範囲を動くときの$S(a)$の最小値は
\[ \left( [ユ]e+[ヨ] \right) \log \left( \frac{e+[ラ]}{[リ]} \right) +[ル] \]
で与えられる.
(2)$k$を正の定数とし,$e^{-k}<t<1$である$t$に対して,
\[ f(t)=\int_0^k |e^{-x|-t} \, dx \]
とおく.$t$が$e^{-k}<t<1$の範囲を動くときの関数$f(t)$の最小値を$M(k)$とおくと,
\[ M(k)=\left( [レ]+e^P \right)^2,\quad \text{ただし} P=\frac{[ロ]}{[ワ]}k \]
となる.このとき
\[ \lim_{k \to +0} \frac{M(k)}{k^2}=\frac{[ヲ]}{[ン]} \]
である.
(1)$a,\ b$は$e^{-1}<a<1,\ b>0$を満たす実数とする.曲線$C:y=\log x$と直線$\ell:y=ax+b$とが接しているとすると,
\[ b=[モ] \log a+[ヤ] \]
が成り立つ.このとき,曲線$C$と$3$つの直線$\ell$,$x=1$,$x=e$とで囲まれた図形の面積を$S(a)$とする.$a$が$e^{-1}<a<1$の範囲を動くときの$S(a)$の最小値は
\[ \left( [ユ]e+[ヨ] \right) \log \left( \frac{e+[ラ]}{[リ]} \right) +[ル] \]
で与えられる.
(2)$k$を正の定数とし,$e^{-k}<t<1$である$t$に対して,
\[ f(t)=\int_0^k |e^{-x|-t} \, dx \]
とおく.$t$が$e^{-k}<t<1$の範囲を動くときの関数$f(t)$の最小値を$M(k)$とおくと,
\[ M(k)=\left( [レ]+e^P \right)^2,\quad \text{ただし} P=\frac{[ロ]}{[ワ]}k \]
となる.このとき
\[ \lim_{k \to +0} \frac{M(k)}{k^2}=\frac{[ヲ]}{[ン]} \]
である.
私立 西南学院大学 2012年 第5問
$a$を実数とするとき,$2$次関数
\[ f(x)=x^2+(3-2a)x+2a \]
について,以下の問に答えよ.
(1)$y=f(x)$のグラフの頂点の座標を求めよ.
(2)$-1 \leqq x \leqq 1$でつねに$f(x) \geqq 0$となるときの$a$の値の範囲を求めよ.
(3)$a$は$(2)$で求めた値の範囲を動くものとする.$-1 \leqq x \leqq 1$における$f(x)$の最小値を$m$とするとき,$m$を$a$で表せ.また,$m$を$a$の関数とみるとき,この関数のグラフを図示せよ.
\[ f(x)=x^2+(3-2a)x+2a \]
について,以下の問に答えよ.
(1)$y=f(x)$のグラフの頂点の座標を求めよ.
(2)$-1 \leqq x \leqq 1$でつねに$f(x) \geqq 0$となるときの$a$の値の範囲を求めよ.
(3)$a$は$(2)$で求めた値の範囲を動くものとする.$-1 \leqq x \leqq 1$における$f(x)$の最小値を$m$とするとき,$m$を$a$で表せ.また,$m$を$a$の関数とみるとき,この関数のグラフを図示せよ.
私立 中央大学 2012年 第2問
座標平面上に円$(x+4)^2+y^2=16$と点$\mathrm{P}(4,\ 0)$がある.このとき,以下の問いに答えよ.
(1)点$\mathrm{P}$を通る直線$y=mx+n$が円と$2$個の共有点を持つように定数$m$の値の範囲を定めよ.
(2)円周上を動く点$\mathrm{Q}$がある.線分$\mathrm{PQ}$を$3:2$に内分する点の軌跡を求めよ.
(1)点$\mathrm{P}$を通る直線$y=mx+n$が円と$2$個の共有点を持つように定数$m$の値の範囲を定めよ.
(2)円周上を動く点$\mathrm{Q}$がある.線分$\mathrm{PQ}$を$3:2$に内分する点の軌跡を求めよ.
私立 中央大学 2012年 第2問
$2$次関数や$3$次関数$y=f(x)$から新しい関数$F(x)$を次のように作る.
実数$x$に対して,$f(\alpha)=f(x)$を満たす最大の$\alpha$をとり
\[ F(x)=\alpha-x \]
と定める.
例えば,$f(x)=x^2$の場合,実数$x$に対して$\alpha$の方程式$f(\alpha)=f(x)$は$\alpha^2=x^2$であり,$\alpha=\pm x$となる.したがって,その$2$つの$\alpha$のうち大きい方をとれば次を得る.
$x<0$のとき$\alpha=-x$により$F(x)=\alpha-x=-2x=2 |x|$
$x \geqq 0$のとき$\alpha=x$により$F(x)=\alpha-x=0$
以下では$f(x)=x^3-3b^2x (b>0)$に対して,上の操作で定めた関数$F(x)$を考える.
(1)$F(-b),\ F(0),\ F(b)$の値を求めよ.
(2)$F(x)=0$となる$x$の範囲を求めよ.また$F(x)>0$となる$x$の範囲を求めよ.
(3)$F(x)>0$となる$x$に対し,$f(\alpha)=f(x)$を満たす最大の$\alpha$を$x$の式で表せ.
(4)関数$y=F(x)$を求め,そのグラフの概形をかけ.また$F(x)$の最大値を求めよ.
実数$x$に対して,$f(\alpha)=f(x)$を満たす最大の$\alpha$をとり
\[ F(x)=\alpha-x \]
と定める.
例えば,$f(x)=x^2$の場合,実数$x$に対して$\alpha$の方程式$f(\alpha)=f(x)$は$\alpha^2=x^2$であり,$\alpha=\pm x$となる.したがって,その$2$つの$\alpha$のうち大きい方をとれば次を得る.
$x<0$のとき$\alpha=-x$により$F(x)=\alpha-x=-2x=2 |x|$
$x \geqq 0$のとき$\alpha=x$により$F(x)=\alpha-x=0$
以下では$f(x)=x^3-3b^2x (b>0)$に対して,上の操作で定めた関数$F(x)$を考える.
(1)$F(-b),\ F(0),\ F(b)$の値を求めよ.
(2)$F(x)=0$となる$x$の範囲を求めよ.また$F(x)>0$となる$x$の範囲を求めよ.
(3)$F(x)>0$となる$x$に対し,$f(\alpha)=f(x)$を満たす最大の$\alpha$を$x$の式で表せ.
(4)関数$y=F(x)$を求め,そのグラフの概形をかけ.また$F(x)$の最大値を求めよ.
私立 中央大学 2012年 第3問
$h>0,\ d \geqq 0$とし,座標空間において$4$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$,$\mathrm{C}(h,\ 0,\ -d)$,$\mathrm{D}(0,\ h,\ d)$を頂点とする四面体を考える.さらに$\mathrm{CD}=2$とする.したがって,四面体の$6$本の辺のうち向かい合う$2$辺の長さは$3$組とも互いに等しい.つまり
\[ \mathrm{AB}=\mathrm{CD},\quad \mathrm{AC}=\mathrm{BD},\quad \mathrm{AD}=\mathrm{BC} \]
となっており,$4$つの面はすべて互いに合同である.この四面体$\mathrm{ABCD}$について以下の問いに答えよ.
(1)$h$を$d$で表し,$d$のとりうる値の範囲を求めよ.
点$\mathrm{A}$を通り平面$\mathrm{BCD}$に垂直な直線と平面$\mathrm{BCD}$の交点を$\mathrm{P}$とおく.この点$\mathrm{P}$を点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線の足とよぶ.同様に,点$\mathrm{B}$から平面$\mathrm{ACD}$に下ろした垂線の足を$\mathrm{Q}$,点$\mathrm{C}$から平面$\mathrm{ABD}$へ下ろした垂線の足を$\mathrm{R}$,点$\mathrm{D}$から平面$\mathrm{ABC}$へ下ろした垂線の足を$\mathrm{S}$とおく.
(2)点$\mathrm{R}$,$\mathrm{S}$は直線$\mathrm{AB}$上にあることに注意して,$\mathrm{R}$,$\mathrm{S}$の座標を$d$で表せ.また,四面体$\mathrm{ABCD}$の対称性を考慮して,点$\mathrm{P}$,$\mathrm{Q}$の座標を$d$で表せ.さらに,計算により$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BQ}}=0$を確認せよ.
(3)辺$\mathrm{BD}$の長さのとりうる値の範囲を求めよ.
(4)平面$\mathrm{ABC}$と平面$\mathrm{ACD}$が直線$\mathrm{AC}$に沿って角度$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$で交わっている.$\theta$のとりうる値の範囲を求めよ.ただし$2$平面の交わる角度とは,それぞれの平面に直交する$2$直線のなす角度である.
\[ \mathrm{AB}=\mathrm{CD},\quad \mathrm{AC}=\mathrm{BD},\quad \mathrm{AD}=\mathrm{BC} \]
となっており,$4$つの面はすべて互いに合同である.この四面体$\mathrm{ABCD}$について以下の問いに答えよ.
(1)$h$を$d$で表し,$d$のとりうる値の範囲を求めよ.
点$\mathrm{A}$を通り平面$\mathrm{BCD}$に垂直な直線と平面$\mathrm{BCD}$の交点を$\mathrm{P}$とおく.この点$\mathrm{P}$を点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線の足とよぶ.同様に,点$\mathrm{B}$から平面$\mathrm{ACD}$に下ろした垂線の足を$\mathrm{Q}$,点$\mathrm{C}$から平面$\mathrm{ABD}$へ下ろした垂線の足を$\mathrm{R}$,点$\mathrm{D}$から平面$\mathrm{ABC}$へ下ろした垂線の足を$\mathrm{S}$とおく.
(2)点$\mathrm{R}$,$\mathrm{S}$は直線$\mathrm{AB}$上にあることに注意して,$\mathrm{R}$,$\mathrm{S}$の座標を$d$で表せ.また,四面体$\mathrm{ABCD}$の対称性を考慮して,点$\mathrm{P}$,$\mathrm{Q}$の座標を$d$で表せ.さらに,計算により$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BQ}}=0$を確認せよ.
(3)辺$\mathrm{BD}$の長さのとりうる値の範囲を求めよ.
(4)平面$\mathrm{ABC}$と平面$\mathrm{ACD}$が直線$\mathrm{AC}$に沿って角度$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$で交わっている.$\theta$のとりうる値の範囲を求めよ.ただし$2$平面の交わる角度とは,それぞれの平面に直交する$2$直線のなす角度である.