タグ「範囲」の検索結果

96ページ目:全1424問中951問~960問を表示)
明治大学 私立 明治大学 2012年 第4問
曲線$y=\log x$上の点$\mathrm{P}(t,\ \log t)$における接線を$\ell$とする.このとき,以下の問に答えよ.

(1)直線$\ell$の方程式を求めよ.
以下では,曲線$y=ax^2-b$は点$\mathrm{P}$を通り,$\mathrm{P}$において$\ell$に接しているとする.ただし,$a$と$b$は正の数である.曲線$y=ax^2-b$と$x$軸で囲まれた図形の面積を$S$とする.
(2)$S$を$a,\ b$を用いて表せ.
(3)$a,\ b$を$t$で表し,$t$のとりうる値の範囲を求めよ.
(4)$S$の最大値を求めよ.なお,$S$がその最大値をとる$t$の値も求めること.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$3$次の整式$F(x)$を$x^2-3x+2$で割ると,余りは$-3x-5$である.これより,$F(2)=[ア]$である.この$F(x)$を$x^2+3x+2$で割った余りが$3x+7$であるとき,$F(0)=[イ]$である.
(2)関数$\displaystyle f(x)=\frac{9 \cdot 10^x}{(1+10^x)^2}$を考える.$f(x) \geqq 2$となる$x$の値の範囲は$[ウ]$である.また,等式$\displaystyle f(-x)=\frac{a \cdot 10^{bx}}{(1+10^x)^2}$がすべての$x$について成り立つように定数$a,\ b$の値を定めると$(a,\ b)=[エ]$である.
(3)直線$\ell:y=7x+6a-5$と放物線$y=(x-a)^2-5$が異なる$2$点で交わるとき,定数$a$のとりうる値の範囲を求めると$[オ]$である.また,直線$y=2x+a$に関して,$\ell$と対称な直線の方程式を求めると$[カ]$である.
(4)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\displaystyle \frac{1}{\sin \theta}+\frac{1}{\cos \theta}=4 \sqrt{3}$のとき,$\sin \theta \cos \theta$の値を求めると$\sin \theta \cos \theta=[キ]$であり,$\sin^4 \theta+\cos^4 \theta$の値を求めると$\sin^4 \theta+\cos^4 \theta=[ク]$である.
甲南大学 私立 甲南大学 2012年 第1問
以下の問いに答えよ.

(1)$\displaystyle \frac{n^2}{250},\ \frac{n^3}{256},\ \frac{n^4}{243}$がすべて整数となるような正の整数$n$のうち,最小のものを求めよ.
(2)$90^\circ<x<180^\circ$のとき,不等式$\displaystyle \frac{\sin 5x}{\sin x}<\frac{\cos 5x}{\cos x}$を満たす$x$の値の範囲を求めよ.
甲南大学 私立 甲南大学 2012年 第2問
$a$を正の実数とする.空間内の$3$点$\mathrm{A}(0,\ 1,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$を通る平面を$\alpha$とし,点$\mathrm{P}(0,\ 1-a,\ 0)$から平面$\alpha$に下ろした垂線の足を$\mathrm{H}$とする.このとき,以下の問いに答えよ.

(1)等式$\overrightarrow{\mathrm{PH}}=\overrightarrow{\mathrm{PA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$が成り立つように実数$s,\ t$の値を定めよ.
(2)線分$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,点$\mathrm{H}$は直線$\mathrm{AM}$上にあることを示せ.
(3)実数$a$が$0<a<3$の範囲を動くとき,四面体$\mathrm{BCHP}$の体積の最大値を求めよ.
甲南大学 私立 甲南大学 2012年 第1問
以下の問いに答えよ.

(1)$\displaystyle \frac{n^2}{250},\ \frac{n^3}{256},\ \frac{n^4}{243}$がすべて整数となるような正の整数$n$のうち,最小のものを求めよ.
(2)$90^\circ<x<180^\circ$のとき,不等式$\displaystyle \frac{\sin 5x}{\sin x}<\frac{\cos 5x}{\cos x}$を満たす$x$の値の範囲を求めよ.
甲南大学 私立 甲南大学 2012年 第2問
$a$を正の実数とする.空間内の$3$点$\mathrm{A}(0,\ 1,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$を通る平面を$\alpha$とし,点$\mathrm{P}(0,\ 1-a,\ 0)$から平面$\alpha$に下ろした垂線の足を$\mathrm{H}$とする.このとき,以下の問いに答えよ.

(1)等式$\overrightarrow{\mathrm{PH}}=\overrightarrow{\mathrm{PA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$が成り立つように実数$s,\ t$の値を定めよ.
(2)線分$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,点$\mathrm{H}$は直線$\mathrm{AM}$上にあることを示せ.
(3)実数$a$が$0<a<3$の範囲を動くとき,四面体$\mathrm{BCHP}$の体積の最大値を求めよ.
甲南大学 私立 甲南大学 2012年 第1問
以下の空欄にあてはまる数を入れよ.

(1)$2$次方程式$x^2+2(a-\sqrt{3})x-3 \sqrt{3}a+9=0$が$2$つの異なる実数解をもち,$x^2+ax+1=0$が虚数解をもつような$a$の値の範囲は$[1]<a<[2]$である.
(2)$\displaystyle 0<x \leqq \frac{\pi}{2}$とするとき,$\displaystyle 2-\cos^2 x+\frac{1}{4 \sin^2 x}$の最小値は$[3]$であり,そのときの$x$の値は$[4]$である.
(3)$y=|x-1|-|2x-4|$は$x=[5]$のときに最大値$[6]$をとる.
(4)$4^{200}$は$[7]$桁の整数である.また,$3^{-200}$は小数第$[8]$位にはじめて$0$でない数字が現れる.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(5)袋の中に,$3,\ 3,\ 3,\ 3,\ 4,\ 4,\ 4,\ 5,\ 5$の$9$つの数字が$1$つずつ書かれた$9$個の玉があり,この中から$2$個取り出す.このとき,取り出された$2$個の玉に書かれた数の和が$8$となる確率は$[9]$であり,数の和の期待値は$[10]$である.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle \left( \frac{1}{9} \right)^x-4 \left( \frac{1}{3} \right)^{x-1}+27 \leqq 0$を満たす$x$の範囲は$[ア]$であり, \\
$\log_2 \left( \log_5 (x+1)+\log_5 (x+3) \right)<1$を満たす$x$の範囲は$[イ]$である.
(2)整式$P(x)$を$(x+1)(x-2)$で割ると余りは$2x+9$,$(x+1)(x+2)$で割ると余りは$-10x-3$になる.このとき$P(x)$を$(x+1)(x-2)(x+2)$で割ると,余りは$[ウ]$となる.また,$P(x)$を$(x-2)(x+2)$で割ると,余りは$[エ]$となる.
(3)関数$f(x)=x^3+3ax^2+b (b>0)$があり,方程式$f(x)=0$は$3$つの異なる実数解をもつ.このとき,実数$a$と$b$が満たす関係は$[オ]$であり,$f(x) \leqq f(0)$となる$x$の範囲は$[カ]$である.
(4)面積が$S$の正方形がある.この正方形の$4$辺をそれぞれ$1:3$に内分する点をとり,これら$4$つの内分点を頂点とする新たな正方形をつくる.この操作によってできる新たな正方形の面積は$[キ]$である.新たにできた正方形に同じ操作をほどこして,さらに新しい正方形をつくる.この操作を少なくとも$[ク]$回おこなうと,最後にできた正方形の面積が$\displaystyle \frac{1}{100}S$以下になる.ただし,$\log_{10}2=0.3010$とする.
(5)放物線$y=x^2$上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$をとり,$\mathrm{A}$における接線を$\ell$とする.$\mathrm{A}$と$\mathrm{B}$の$x$座標をそれぞれ$a,\ b$とし,線分$\mathrm{AB}$を$t:1-t$に内分する点$\mathrm{P}$をとる($0<t<1$).$\mathrm{P}$を通り$y$軸と平行な直線が,$\ell$と交わる点を$\mathrm{Q}$,放物線と交わる点を$\mathrm{R}$とする.このとき,$\mathrm{QR}$の長さは$[ケ]$であり,$\mathrm{QR}:\mathrm{RP}=[コ]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
座標空間の原点を$\mathrm{O}$とし,座標空間内に$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 0,\ 1)$,$\mathrm{C}(1,\ 1,\ 1)$をとる.また$0<s<1$,$0<t<1$とし,線分$\mathrm{AB}$を$s:(1-s)$に内分する点を$\mathrm{P}$,線分$\mathrm{OC}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.以下の問いに答えなさい.

(1)$2$点$\mathrm{P}$,$\mathrm{Q}$の座標を,それぞれ$s,\ t$を用いて表しなさい.
(2)$\displaystyle s=\frac{1}{4}$,$\displaystyle t=\frac{1}{2}$のときの$\angle \mathrm{APQ}$の大きさを$\theta$とする.このとき$\cos \theta$の値を求めなさい.ただし,$0^\circ<\theta<180^\circ$とする.
(3)線分$\mathrm{PQ}$の長さを$l$とする.このとき$s,\ t$が,それぞれ$0<s<1$,$0<t<1$の範囲を動くときの$l$の最小値を求めなさい.
東京理科大学 私立 東京理科大学 2012年 第2問
$\mathrm{O}$を原点とする座標平面において,点$(1,\ 1)$を点$(5,\ 5)$に,点$(1,\ -7)$を点$(-3,\ 21)$に移す$1$次変換を$f$とする.$f$による点$\mathrm{P}$の像を点$\mathrm{Q}$とするとき,$\mathrm{P}$に対して内積の条件
\[ \overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{PQ}}=0 (*) \]
を考える.

(1)$f$を表す行列を求めよ.
(2)条件$(*)$を満たす点$\mathrm{P}(x,\ y)$の軌跡は$2$直線となる.この$2$直線の方程式を求めよ.
実数$a \geqq 0$に対して,
「点$(a,\ 0)$を中心とする半径$1$の円周上の点$\mathrm{P}$で,条件$(*)$を満たすものがちょうど$2$つある」 $(**)$
とする.この$2$点を$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$とするとき,$i=1,\ 2$に対して,$\mathrm{P}_i$の$f$による像を$\mathrm{Q}_i$とし,$\triangle \mathrm{OP}_i \mathrm{Q}_i$の面積を$S_i$とする.
(3)上の条件$(**)$を満たす$a$の値の範囲を求めよ.
(4)$S_i$を$y_i$を用いて表せ.また,和$S_1+S_2$の値を$a$を用いて表せ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。