タグ「範囲」の検索結果

93ページ目:全1424問中921問~930問を表示)
早稲田大学 私立 早稲田大学 2012年 第2問
座標平面上に$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(2,\ 0)$,$\mathrm{B}(2,\ 1)$,$\mathrm{C}(0,\ 1)$がある.実数$a$に対して$4$点$\mathrm{P}(a+1,\ a)$,$\mathrm{Q}(a,\ a+1)$,$\mathrm{R}(a-1,\ a)$,$\mathrm{S}(a,\ a-1)$をとる.このとき,次の設問に答えよ.

(1)長方形$\mathrm{OABC}$と正方形$\mathrm{PQRS}$が共有点を持つような$a$の範囲を求めよ.
(2)長方形$\mathrm{OABC}$と正方形$\mathrm{PQRS}$の共通部分の面積が最大となる$a$の値と,そのときの共通部分の面積を求めよ.
早稲田大学 私立 早稲田大学 2012年 第1問
次の小問の解答を解答用紙の所定欄に記入せよ.

(1)実数$a,\ b$が$0 \leqq a \leqq \pi$,$a<b$をみたすとき,
\[ I(a,b) = \int_a^b e^{-x}\sin x\;dx \]
とおく.ただし,$e$は自然対数の底とする.
\[ \lim_{b \to \infty} I(a,\ b) = 0 \]
が成立するように$a$を定めよ.

(2)行列$A=
\begin{pmatrix}
\;\;\; a & b \;\;\;\; \\
\;\;\; c & d \;\;\;\;
\end{pmatrix}
$は$ad-bc=2$および$a+d=3$をみたし,かつ,ある行列
\[ B =
\begin{pmatrix}
\;\;\; 1 & 1 \;\;\;\; \\
\;\;\; 0 & 1 \;\;\;\;
\end{pmatrix}
\begin{pmatrix}
\;\;\; \alpha & 0 \;\;\;\; \\
\;\;\; 0 & \beta \;\;\;\;
\end{pmatrix}
\begin{pmatrix}
\;\;\; 1 & 1 \;\;\;\; \\
\;\;\; 0 & 1 \;\;\;\;
\end{pmatrix}^{-1}
\]
に対して$AB=BA$をみたしている.ただし$\alpha \neq \beta$とする.このような行列$A$をすべて求めよ.

(3)$c$を正の実数として,漸化式
\[ a_n = \frac{{a_{n-1}}^2}{3^n} \quad (n \geqq 1), \qquad a_0 = c \]
で定義される数列$\{a_n\}$を考える.このとき$\displaystyle\lim_{n \to \infty} a_n = \infty$となるような$c$の範囲を求めよ.
(4)実数$t$が$1 \leqq t \leqq 2$の範囲で動くとき,$xy$平面の直線
\[ y=(3t^2-4)x-2t^3 \]
が通る範囲を$H$とする.$H$の内,直線$x=1$と$\displaystyle x=\frac{20}{9}$ではさまれる部分の面積を求めよ.
早稲田大学 私立 早稲田大学 2012年 第2問
$a>0$,$a \neq 1$とするとき,次の問に答えよ.

(1)正の実数$x,y$に対して,$\displaystyle\log_a\frac{x+y}{2}$と$\displaystyle\frac{1}{2}(\log_ax+\log_ay)$の大小関係を調べよ.
(2)実数$x,y$に対して,$\log_a(x+y)=\log_ax+\log_ay$が成り立つとき,$\displaystyle\frac{1}{x}$および$\displaystyle\frac{1}{y}$のとり得る値の範囲を求めよ.
(3)$(2)$において,$k=2x+y$のとり得る値の範囲を求めよ.
(4)$\log_a(x+y)=\log_ax+\log_ay$を満たす整数$x,\ y$の組をすべて求めよ.
早稲田大学 私立 早稲田大学 2012年 第3問
曲線$x^2+y^2=100\ (x \geqq 0 \text{かつ} y \geqq 0)$を$C$とする.点P,Qは$C$上にあり,線分PQの中点をRとする.ただし,点Pと点Qが一致するときは,点Rは点Pに等しいものとする.

(1)点Pの座標が$(6,\ 8)$であり,点Qが$C$上を動くとき,点Rの軌跡は,
\[ \left( x-[キ]\right)^2 + \left(y-[ク]\right)^2 = [ケ],\]
\[ [コ] \leqq x \leqq [サ], \ [シ] \leqq y \leqq [ス] \]
である.
(2)点P,Qが$C$上を自由に動くとき,点Rの動く範囲の面積は,
\[ \frac{[セ]}{[ソ]} \pi + [タ] \]
である.ただし,[ソ]はできるだけ小さな自然数で答えること.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
$t$を実数の定数として,$x$の$3$次関数
\[ f(x) = \frac{1}{3}x^3-2^tx^2+(4^t-4^{-t})x \]
を考える.$f(x)$は$x=\alpha$において極大値を,$x=\beta$において極小値をとるとする.

(1)$\alpha,\ \beta$を$t$のなるべく簡単な式で表せ.
(2)$\alpha,\ \beta$が$\alpha\beta=1$を満たすとき
\[ t= \frac{1}{2} \left\{ \log_2 \left([(a)]+\sqrt{[(b)]}\right)-[(c)] \right\} \]
である.(a),\ (b),\ (c)にあてはまる$1$桁の自然数を求めよ.
(3)$\alpha,\ \beta$が$\beta-\alpha \geqq 12$を満たすときの$t$の値の範囲は
\[ t \leqq - [(d)] \log_2 [(e)] -1 \]
である.(d),\ (e)にあてはまる$1$桁の自然数を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
次の空欄に当てはまる数字を書け.

(1)$\mathrm{A}$の袋には赤玉$1$個と黒玉$15$個,$\mathrm{B}$の袋には黒玉$16$個が入っている.それぞれの袋から$1$個ずつ玉を取り出して交換する,という試行を$n$回繰り返したとき,赤玉が$\mathrm{A}$の袋に入っている確率を$p_n$とする.ただし,$n$は自然数である.例えば,
\[ p_1 = \frac{[$1$][$2$]}{[$3$][$4$]},\ p_2 = \frac{[$5$][$6$][$7$]}{[$8$][$9$][$10$]} \]
である.$p_{n+1}$を$p_n$で表すと,$p_{n+1}=\displaystyle\frac{[$11$]}{[$12$]}p_n+\displaystyle\frac{[$13$]}{[$14$][$15$]}$となるので,これより
\[ p_n = \frac{[$16$]}{[$17$]}\left\{1+\left(\frac{[$18$]}{[$19$]}\right)^n\right\} \]
と求まる.
(2)赤玉$7$個,白玉$10$個,青玉$n$個が入った袋から,同時に$4$個の玉を取り出すとき,それらが赤玉$1$個,白玉$2$個,青玉$1$個である確率を$q_n$とする.ただし,$n$は自然数である.$\displaystyle\frac{q_{n+1}}{q_n}$を$n$の式で表すと,
\[ \frac{q_{n+1}}{q_n} = \frac{n^2+[$20$][$21$]n+[$22$][$23$]}{n^2+[$24$][$25$]n} \]
となる.これより$n \leq [$26$]$の範囲で$q_n < q_{n+1}$が成り立ち,また,$n \geq [$27$]$の範囲で$q_n > q_{n+1}$が成り立つことがわかる.従って,$q_n$は$n= [$28$]$で最大値$\displaystyle\frac{[$29$][$30$]}{[$31$][$32$][$33$]}$をとる.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
次の各問いに答えよ.

(1)3つの行列の積
\[ \left(
x \quad y
\right) \left( \begin{array}{cc}
2 & a \\
a & 1
\end{array}
\right)
\left(
\begin{array}{c}
x \\
y
\end{array}
\right) \]
の成分が任意の実数$x,\ y$に対し0以上となるような実数$a$の範囲を不等式で表すと[ア]となる.
(2)$\angle B$が直角の直角三角形ABCの2辺AB,\ BCの長さをそれぞれ$3,\ 1$とする.また,$0<x<1$を満たす$x$に対し線分BCを$1:x$に外分する点をDとする.いま,$\angle \text{CAD}=2 \angle\text{BAC}$が成り立っているとすると,$x=[イ]$であり,$\triangle$ACDの外接円の半径は[ウ]である.
(3)関数$f(x),\ g(x)$が
\[
\left\{
\begin{array}{l}
f(x) = xe^x + 2x \displaystyle\int_0^2|g(t)|\, dt - 1 \\
\\
g(x) = x^2 -x \displaystyle\int_0^1 f(t)\,dt
\end{array}
\right.
\]
を満たすとき,$\displaystyle\int_0^2 |g(t)|\, dt$の値は[エ]または[オ]である.求める過程も解答欄(3)に書きなさい.
慶應義塾大学 私立 慶應義塾大学 2012年 第5問
$a>0$とし,$x$の$3$次関数$f(x)$を
\[ f(x) = x^3 -5ax^2 + 7a^2x \]
と定める.また,$t \geqq 0$に対し,曲線$y=f(x)$と$x$軸および$2$直線$x=t$,$x=t+1$で囲まれた部分の面積を$S(t)$で表す.

(1)$S(0)=[ト]$である.
(2)$f(x)$は$x=[ナ]$で極小値をとる.曲線$y=f(x)$上にあり,$x$の値$[ナ]$に対応する点を$\mathrm{P}$とする.$a$の値が変化するとき,点$\mathrm{P}$の軌跡は曲線$y=[ニ] \ (x>0)$である.
(3)$S(t)=S(0)$を満たす正の実数$t$が存在するような$a$の値の範囲を不等式で表すと$[ヌ]$となる.以下,$a$の値はこの範囲にあるとする.$c$を$S(c)=S(0)$を満たす最大の正の実数とする.区間$0 \leqq t \leqq c$における$S(t)$の最大値,最小値をそれぞれ$M(a)$,$m(a)$とするとき,$M(a)+m(a)=[ネ]$となる.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
関数$f(x)=x(x-1)(x-3)(x-4)$は$0 \leq x \leq 4$の範囲において,
$x=[$35$]$で最大値[$36$]をとり,$x=\displaystyle\frac{[$37$]\text{±}\sqrt{[$38$][$39$]}}{[$40$]}$
で最小値$-\displaystyle\frac{[$41$]}{[$42$]}$をとる.
上智大学 私立 上智大学 2012年 第1問
次の各問いに答えよ.

(1)$0 \leqq x \leqq \pi$において
\[ y= \sin x + 2 \cos \left( x - \frac{\pi}{6} \right) \]
の最大値は$\sqrt{[ア]}$であり,最小値は$-\sqrt{[イ]}$である.
(2)$xy = 4x -y+28$を満たす正の整数$x,\ y$の組$(x,\ y)$は全部で[ウ]組ある.
(3)放物線$y=\displaystyle\frac{1}{2}x^2$は,$x$軸方向に[エ],$y$軸方向に$\displaystyle\frac{[オ]}{[カ]}$だけ平行移動すると,直線$y=-x$と直線$y=3x$の両方に接する.
(4)実数$x,\ y$が$x^2+xy+2y^2=1$を満たすとき,$y^2$がとり得る値の範囲は
\[ [キ] \leqq y^2 \leqq \frac{[ク]}{[ケ]} \]
である.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。