タグ「範囲」の検索結果

92ページ目:全1424問中911問~920問を表示)
福井大学 国立 福井大学 2012年 第4問
$xy$平面上に,曲線$C_1:x=t-\sin t,\ y=1-\cos t \ (0 \leqq t \leqq 2\pi)$がある.$0<t<2\pi$をみたす$t$に対し,$C_1$上の点$\mathrm{P}_1(t-\sin t,\ 1-\cos t)$における$C_1$の法線を$m$とおき,$x$軸と$m$の交点を$\mathrm{M}$とし,$\mathrm{M}$が線分$\mathrm{P}_1 \mathrm{P}_2$の中点になるように点$\mathrm{P}_2$をとる.このとき,以下の問いに答えよ.
(図は省略)

(1)直線$m$の方程式を求めよ.また,$\mathrm{M},\ \mathrm{P}_2$の座標を$t$を用いて表せ.さらに,$\mathrm{P}_2$の$x$座標を$f(t)$とおくと,関数$f(t)$は,$0<t<2\pi$で増加することを示せ.
(2)$t$が$0 \leqq t \leqq 2\pi$の範囲を動くときの$\mathrm{P}_2$の軌跡を$C_2$とするとき,$x$軸と曲線$C_2$で囲まれた図形の面積を求めよ.ただし,$t=0,\ 2\pi$に対しては,点$\mathrm{P}_2$をそれぞれ点$(0,\ 0)$,点$(2\pi,\ 0)$にとるものとする.
長崎大学 国立 長崎大学 2012年 第8問
実数$x,\ y$が連立不等式
\[ \left\{
\begin{array}{ll}
10^{10}<2^x3^y<10^{11} & \cdots\cdots (\mathrm{A}) \\
10^9<3^x2^y<10^{10} & \cdots\cdots (\mathrm{B})
\end{array}
\right. \]
を満たすとき,次の問いに答えよ.

(1)連立不等式$(\mathrm{A})$,$(\mathrm{B})$が表す$xy$平面上の領域は,どのような図形であるか答えよ.また,その理由を述べよ.
(2)連立不等式$(\mathrm{A})$,$(\mathrm{B})$を満たす実数$x,\ y$において,$x+y$がとりうる値の範囲,および$y-x$がとりうる値の範囲をそれぞれ求めよ.
(3)連立不等式$(\mathrm{A})$,$(\mathrm{B})$を満たす整数$x,\ y$を考える.このとき,$y-x$が最大となる整数$x,\ y$を求めよ.ただし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$として計算してよい.
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第3問
曲線$y^2-2xy+x^3=0$について,以下の問いに答えよ.ただし,$x$および$y$は$x \geqq 0,\ y \geqq 0$の実数とする.

(1)$y$についての解を求めよ.
(2)曲線の概形を描き,$x$および$y$のとりえる値の範囲を求めよ.
(3)直線$y=x$と曲線のうち$y \geqq x$を満たす線分で囲まれた部分の面積$S$を求めよ.
山梨大学 国立 山梨大学 2012年 第1問
次の問いに答えよ.

(1)$\overrightarrow{a}$と$\overrightarrow{b}$について,$|\overrightarrow{a}|=1$,$|\overrightarrow{b}|=5$,$\overrightarrow{a} \cdot \overrightarrow{b}=3$である.このとき,$\overrightarrow{p}=3 \overrightarrow{a}-\overrightarrow{b}$の大きさ$|\overrightarrow{p}|$を求めよ.
(2)条件$\left\{ \begin{array}{l}
1 \leqq x-2y \leqq 3 \\
0 \leqq x+y \leqq 1
\end{array} \right.$の表す領域$D$を図示せよ.
(3)$0 \leqq \theta<2\pi$のとき,不等式$3 \sin \theta-1<\cos 2\theta$を満たす$\theta$の値の範囲を求めよ.
(4)平面上に点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(-1,\ -1)$がある.点$\mathrm{P}$が曲線$y=x^3$の$0<x<1$の部分を動くとき,$\triangle \mathrm{ABP}$の面積の最大値を求めよ.
愛媛大学 国立 愛媛大学 2012年 第3問
次の問いに答えよ.

(1)放物線$y=x^2+2x-3$と直線$y=2x+4$の交点の座標を求めよ.
(2)次の連立不等式で表される領域を$D$とする.領域$D$を図示し,その面積を求めよ.
\[ \left\{ \begin{array}{l}
y \geqq x^2+2x-3 \\
y \leqq 2x+4 \\
y \leqq 0
\end{array} \right. \]
(3)点$(x,\ y)$が(2)の領域$D$を動くとき,$x+2y$のとりうる値の範囲を求めよ.
山梨大学 国立 山梨大学 2012年 第2問
次の問いに答えよ.

(1)多項式$f(x)$を$x-1$で割ると$3$余り,$x-2$で割ると$2$余るとき,$f(x)$を$(x-1)(x-2)$で割ったときの余りを求めよ.
(2)不等式$0<\log (x^2-4x+3)-\log (x^2-6x+8)<\log 2$を満たす$x$の範囲を求めよ.
(3)$f(x)$が等式$\displaystyle f(x)=x^2+\int_0^x f^\prime(t) e^{t-x} \, dt$を満たしているとき,$f(x)$を求めよ.
東京海洋大学 国立 東京海洋大学 2012年 第2問
$a$を正の定数とする.放物線$C:y=(1-x)(x+a)$と$C$上の動点$\mathrm{P}(t,\ (1-t)(t+a))$について,次の問に答えよ.ただし,$0<t<1$とする.

(1)$x$軸に関して$\mathrm{P}$と対称な点を$\mathrm{Q}$,$xy$平面の原点を$\mathrm{O}$とし,放物線$C$と$y$軸および$2$つの線分$\mathrm{PQ}$,$\mathrm{OQ}$とで囲まれた図形の面積を$S$とするとき,$S$を$t$と$a$で表せ.
(2)$S$を最大にする$t$が$\displaystyle \frac{3}{4}<t<\frac{4}{5}$の範囲に存在することを示せ.
山口大学 国立 山口大学 2012年 第1問
曲線$C:y=x^3-12x^2+25x-10$と直線$\ell:y=mx-10$を考える.このとき,次の問いに答えなさい.

(1)$C$と$\ell$が異なる$3$点で交わるような$m$の値の範囲を求めなさい.
(2)$(1)$において,$C$と$\ell$の交点を$x$座標が小さいものから順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とおく.このとき,$\mathrm{AB}:\mathrm{BC}=1:2$となる$m$の値をすべて求めなさい.
早稲田大学 私立 早稲田大学 2012年 第3問
曲線$x^2+y^2=100$($x \geqq 0$かつ$y \geqq 0$)を$C$とする.点$\mathrm{P},\ \mathrm{Q}$は$C$上にあり,線分$\mathrm{PQ}$の中点を$\mathrm{R}$とする.ただし,点$\mathrm{P}$と点$\mathrm{Q}$が一致するときは,点$\mathrm{R}$は点$\mathrm{P}$に等しいものとする.

(1)点$\mathrm{P}$の座標が$(6,\ 8)$であり,点$\mathrm{Q}$が$C$上を動くとき,点$\mathrm{R}$の軌跡は,
\[ (x-[キ])^2+(y-[ク])^2=[ケ],\ [コ] \leqq x \leqq [サ],\ [シ] \leqq y \leqq [ス] \]
である.
(2)点$\mathrm{P}$,$\mathrm{Q}$が$C$上を自由に動くとき,点$\mathrm{R}$の動く範囲の面積は,
\[ \frac{[セ]}{[ソ]}\pi + [タ] \]
である.ただし,$[ソ]$はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第5問
実数$a$に対して関数$f(a)$を,
\[ f(a) = \int_1^2 \left|\frac{a}{x}-1\right|\, dx \]
と定める.$a$が$1 \leqq a \leqq 2$の範囲を動くとき,$f(a)$の最小値は$[ナ]+[ニ]\sqrt{[ヌ]}$であり,最大値は$[ネ]+[ノ]\log [ハ]$である.ただし,[ヌ],[ハ]はできるだけ小さな自然数で答えること.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。