タグ「範囲」の検索結果

89ページ目:全1424問中881問~890問を表示)
鹿児島大学 国立 鹿児島大学 2012年 第2問
$x$の関数$f(x)=8^x+8^{-x}-9(4^x+4^{-x})+27(2^x+2^{-x})-26$について,次の各問いに答えよ.

(1)$t=2^x+2^{-x}$とおく.$f(x)$を$t$の関数として表したものを$g(t)$とするとき,$g(t)$を求めよ.
(2)$t=2^x+2^{-x}$のとる値の範囲を求めよ.
(3)$t$が(2)で求めた範囲を動くとき,関数$y=g(t)$の増減を調べよ.
(4)$x \geqq 0$のとき,関数$f(x)$の最小値とその最小値を与える$x$の値を求めよ.
秋田大学 国立 秋田大学 2012年 第1問
$a$は$\displaystyle a>-\frac{1}{2}$を満たす実数とし,$f(x)=x^2-2ax$とおく.次の問いに答えよ.

(1)2次関数$y=f(x)$のグラフの頂点を求めよ.
(2)2次不等式$f(x) \geqq x$を解け.
(3)$x$が$f(x) \geqq x$を満たす範囲を動くとき,$f(x)$の最小値を求めよ.
秋田大学 国立 秋田大学 2012年 第1問
$a$は$\displaystyle a>-\frac{1}{2}$を満たす実数とし,$f(x)=x^2-2ax$とおく.次の問いに答えよ.

(1)2次関数$y=f(x)$のグラフの頂点を求めよ.
(2)2次不等式$f(x) \geqq x$を解け.
(3)$x$が$f(x) \geqq x$を満たす範囲を動くとき,$f(x)$の最小値を求めよ.
宮崎大学 国立 宮崎大学 2012年 第4問
座標平面上に,2つの放物線
\[ C_1:y=(x-t)^2+t,\quad C_2:y=-x^2+4 \]
がある.ただし,$t$は実数とする.このとき,次の各問に答えよ.

(1)$C_1,\ C_2$が異なる2点で交わるとき,$t$の値の範囲を求めよ.
(2)(1)のとき,$C_1$と$C_2$の2つの交点を結ぶ線分の中点の軌跡を図示せよ.
鹿児島大学 国立 鹿児島大学 2012年 第2問
$x$の関数$f(x)=8^x+8^{-x}-9(4^x+4^{-x})+27(2^x+2^{-x})-26$について,次の各問いに答えよ.

(1)$t=2^x+2^{-x}$とおく.$f(x)$を$t$の関数として表したものを$g(t)$とするとき,$g(t)$を求めよ.
(2)$t=2^x+2^{-x}$のとる値の範囲を求めよ.
(3)$t$が(2)で求めた範囲を動くとき,関数$y=g(t)$の増減を調べよ.
(4)$x \geqq 0$のとき,関数$f(x)$の最小値とその最小値を与える$x$の値を求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第3問
$x$の関数$f(x)=8^x+8^{-x}-9(4^x+4^{-x})+27(2^x+2^{-x})-26$について,次の各問いに答えよ.

(1)$t=2^x+2^{-x}$とおく.$f(x)$を$t$の関数として表したものを$g(t)$とするとき,$g(t)$を求めよ.
(2)$t=2^x+2^{-x}$のとる値の範囲を求めよ.
(3)$t$が(2)で求めた範囲を動くとき,関数$y=g(t)$の増減を調べよ.
(4)$x \geqq 0$のとき,関数$f(x)$の最小値とその最小値を与える$x$の値を求めよ.
三重大学 国立 三重大学 2012年 第2問
座標平面上で$y=x+1$で表される直線を$\ell$とする.また,4点A$(-1,\ 1)$,B$(0,\ -2)$,C$(3,\ 1)$,D$(1,\ 3)$をとる.以下の問いに答えよ.

(1)領域$R_1=\{ (x,\ y) \;|\; y>x+1 \}$と$R_2=\{ (x,\ y) \;|\; y \leqq x+1 \}$を考える.4点A,B,C,Dはそれぞれ,領域$R_1,\ R_2$のどちらにあるか答えよ.
(2)$k$を定数とし,直線$y=x+k$上に点E$(x,\ x+k)$をとる.Eと直線$\ell$の距離が$\sqrt{2}$となる$k$の値をすべて求めよ.
(3)四角形ABCDの周または内部で,直線$\ell$との距離が$\sqrt{2}$以下となる点の範囲を図示せよ.
(4)点P$(x,\ y)$が(3)で求めた範囲を動くとき,$2x+y$がとる値の最小値と最大値を求めよ.
三重大学 国立 三重大学 2012年 第2問
座標平面上で$y=x+1$で表される直線を$\ell$とする.また,4点A$(-1,\ 1)$,B$(0,\ -2)$,C$(3,\ 1)$,D$(1,\ 3)$をとる.以下の問いに答えよ.

(1)領域$R_1=\{ (x,\ y) \;|\; y>x+1 \}$と$R_2=\{ (x,\ y) \;|\; y \leqq x+1 \}$を考える.4点A,B,C,Dはそれぞれ,領域$R_1,\ R_2$のどちらにあるか答えよ.
(2)$k$を定数とし,直線$y=x+k$上に点E$(x,\ x+k)$をとる.Eと直線$\ell$の距離が$\sqrt{2}$となる$k$の値をすべて求めよ.
(3)四角形ABCDの周または内部で,直線$\ell$との距離が$\sqrt{2}$以下となる点の範囲を図示せよ.
(4)点P$(x,\ y)$が(3)で求めた範囲を動くとき,$2x+y$がとる値の最小値と最大値を求めよ.
徳島大学 国立 徳島大学 2012年 第1問
$a>0$とする.曲線$y=a^3x^2$を$C_1$とし,曲線$\displaystyle y=-\frac{1}{x} (x>0)$を$C_2$とする.また,$C_1$と$C_2$に同時に接する直線を$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$と曲線$C_1,\ C_2$との接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.$a$が$a>0$の範囲を動くとき,$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離の最小値を求めよ.
徳島大学 国立 徳島大学 2012年 第2問
$a>0$とする.曲線$y=a^3x^2$を$C_1$とし,曲線$\displaystyle y=-\frac{1}{x} (x>0)$を$C_2$とする.また,$C_1$と$C_2$に同時に接する直線を$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$と曲線$C_1,\ C_2$との接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.$a$が$a>0$の範囲を動くとき,$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離の最小値を求めよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。