タグ「範囲」の検索結果

88ページ目:全1424問中871問~880問を表示)
奈良女子大学 国立 奈良女子大学 2012年 第6問
$a$を実数とする.関数$y=|x-1|+|x-2|$と関数$y=x+a$のグラフをそれぞれ$G_1,\ G_2$とおく.$G_1$と$G_2$が交点を持つとする.次の問いに答えよ.

(1)$G_1$をかけ.
(2)$G_1$と$G_2$の囲む領域が三角形であるとする.このときの$a$の値の範囲を求め,三角形の面積$S_1$を$a$を用いて表せ.
(3)$G_1$と$G_2$の囲む領域が四角形であるとする.このときの$a$の値の範囲を求め,四角形の面積$S_2$を$a$を用いて表せ.
富山大学 国立 富山大学 2012年 第2問
$x>0$のとき,$\tan \theta =x$となる$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲にただ1つ存在する.その$\theta$を$f(x)$と表すことにする.

(1)$\displaystyle f \left( \frac{2}{k} \right)+f \left( \frac{2}{l} \right) = \frac{\pi}{4}$を満たす自然数の組$(k,\ l)$を求めよ.ただし,$k \leqq l$とする.
(2)自然数$m,\ n$について,$\displaystyle \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を$m$と$n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を求めよ.
富山大学 国立 富山大学 2012年 第2問
$x>0$のとき,$\tan \theta =x$となる$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲にただ1つ存在する.その$\theta$を$f(x)$と表すことにする.

(1)$\displaystyle f \left( \frac{2}{k} \right)+f \left( \frac{2}{l} \right) = \frac{\pi}{4}$を満たす自然数の組$(k,\ l)$を求めよ.ただし,$k \leqq l$とする.
(2)自然数$m,\ n$について,$\displaystyle \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を$m$と$n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を求めよ.
富山大学 国立 富山大学 2012年 第2問
$x>0$のとき,$\tan \theta =x$となる$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲にただ1つ存在する.その$\theta$を$f(x)$と表すことにする.

(1)3以上の素数$p$に対して,$\displaystyle f \left( \frac{p}{k} \right)+f \left( \frac{p}{l} \right) = \frac{\pi}{4}$を満たす自然数の組$(k,\ l)$を求めよ.ただし,$k \leqq l$とする.
(2)自然数$m,\ n$について,$\displaystyle \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を$m$と$n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を求めよ.
富山大学 国立 富山大学 2012年 第1問
$x>0$のとき,$\tan \theta =x$となる$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲にただ$1$つ存在する.その$\theta$を$f(x)$と表すことにする.

(1)$\displaystyle f \left( \frac{2}{k} \right)+f \left( \frac{2}{l} \right) = \frac{\pi}{4}$を満たす自然数の組$(k,\ l)$を求めよ.ただし,$k \leqq l$とする.
(2)自然数$m,\ n$について,$\displaystyle \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を$m$と$n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を求めよ.
九州工業大学 国立 九州工業大学 2012年 第1問
関数$f(x)=kx^3-3kx \ (k>0)$が表す座標平面上の曲線を$C:y=f(x)$とする.曲線$C$上の2点P$(p,\ f(p))$,Q$(ap,\ f(ap))$における接線をそれぞれ$\ell_1,\ \ell_2$とする.ただし,$p>0,\ a \neq 1$とする.以下の問いに答えよ.

(1)点Pにおける接線$\ell_1$の方程式を$k,\ p$を用いて表せ.
(2)点Qにおける接線$\ell_2$が点Pを通るとき,$a$の値を求めよ.
(3)ある$k$に対して2つの接線$\ell_1,\ \ell_2$が点Pにおいて垂直に交わっているとき,$k$を$p$を用いて表せ.また,そのような$k$が存在する$p$の値の範囲を求めよ.
(4)ある$k$に対して2つの接線$\ell_1,\ \ell_2$が点Pにおいて垂直に交わっているとき,接線$\ell_2$と曲線$C$によって囲まれた図形の面積$S$を$p$を用いて表せ.
岐阜大学 国立 岐阜大学 2012年 第4問
$a$を$a>1$である実数とする.関数$f(x)=2a^{3x+1}-a^{2x+2}-2a^{2x}+a^{x+1}$について,以下の問に答えよ.

(1)$a>\sqrt{2}$とする.$f(x) \leqq 0$を満たす$x$の値の範囲を求めよ.
(2)$a \leqq \sqrt{2}$とする.$f(x) \leqq 0$を満たす$x$の値の範囲を求めよ.
岐阜大学 国立 岐阜大学 2012年 第5問
$a$を正の実数とする.$xy$平面上に放物線$C:y=x^2-2ax+a^2+1$と2つの直線$\ell_1:y=-2ax+6$,$\ell_2:y=2$がある.$\ell_1$と$\ell_2$の交点が不等式$y>x^2-2ax+a^2+1$の表す領域にあるとき,以下の問に答えよ.

(1)$a$のとりうる値の範囲を求めよ.
(2)$C$と$\ell_1$の2つの交点の$x$座標,$C$と$\ell_2$の2つの交点の$x$座標をそれぞれ求めよ.
(3)$C$と$\ell_1$の2つの交点間の距離を求めよ.
(4)(3)で求めた距離が最大となるときの$a$の値を求めよ.
九州工業大学 国立 九州工業大学 2012年 第3問
$\mathrm{O}$を原点とする座標平面上に点$\mathrm{P}_0(1,\ 1)$,$\mathrm{Q}_0(1,\ 0)$がある.ある$p \ (0<p<1)$に対して,点$\mathrm{P}_1(p,\ p)$,$\mathrm{Q}_1(p,\ 0)$を定め,さらに,自然数$n$について点$\mathrm{P}_{n+1}$,$\mathrm{Q}_{n+1}$を次のように定める.
\begin{itemize}
点$\mathrm{Q}_n$を通り直線$\mathrm{Q}_0 \mathrm{P}_1$と平行な直線と,直線$\mathrm{OP}_0$の交点を$\mathrm{P}_{n+1}$とする.
点$\mathrm{P}_{n+1}$を通り$y$軸と平行な直線と,$x$軸の交点を$\mathrm{Q}_{n+1}$とする.
\end{itemize}
また,$\triangle \mathrm{Q}_{n-1} \mathrm{P}_n \mathrm{Q}_n$の面積を$S_n$とするとき,以下の問いに答えよ.

(1)$S_1$を$p$を用いて表せ.
(2)点$\mathrm{Q}_{n-1}$の$x$座標を$q$とするとき,点$\mathrm{Q}_n$の$x$座標を$p,\ q$を用いて表せ.
(3)$S_n$を$p,\ n$を用いて表せ.
(4)$n$を定数として,$p$を$0<p<1$の範囲で動かすとき,$S_n$を最大にする$p$とそのときの$S_n$をそれぞれ$n$を用いて表せ.
(5)(4)で求めた$S_n$に対して,$\displaystyle \lim_{n \to \infty}nS_n$を求めよ.必要であれば,自然対数の底$e$について$\displaystyle \lim_{h \to 0}(1+h)^{\frac{1}{h}}=e$が成り立つことを用いてよい.

(図は省略)
岩手大学 国立 岩手大学 2012年 第2問
関数$f(x)=2\sin^2 x+4\sin x +3\cos 2x$について,以下の問いに答えよ.ただし,$0 \leqq x < 2\pi$である.

(1)$t=\sin x$とするとき,$f(x)$を$t$の式で表せ.
(2)$f(x)$の最大値と最小値を求めよ.また,そのときの$x$の値をすべて求めよ.
(3)方程式$f(x)=a$の相異なる解が$4$個であるような実数$a$の値の範囲を求めよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。